首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the present study sediment and water samples collected from Kowsar Dam reservoir in Kohkiluye and Boyerahmad Province, southwest of Iran, are subjected to bulk digestion and chemical partitioning. The concentrations of nickel, lead, zinc, copper, cobalt, cadmium, manganese and iron in water and bed sediment were determined by atomic absorption spectrometry. The concentrations of metals bounded to five sedimentary phases were estimated. On this basis, the proportions of natural and anthropogenic elements were calculated.The anthropogenic portion of elements are as follows: zinc (96 %)> cobalt (88 %)> iron (78 %)> magnesium (78 %)> nickel (78 %)> copper (66 %)> lead (63 %)> cadmium (59 %). The results show sediment contamination by nickel, cadmium and lead, according to the world aquatic sediments and mean earth crust values. Manganese and copper have strong association with organic matter and are of high portion of sulfide bounded ions. Finally, The degree of sediment contamination was evaluated using enrichment factor, geo-accumulation index (Igeo) and pollution index (IPoll). The sediments were identified to be of high cadmium and lead pollution index. The pattern of pollution intensity according to enrichment factor is as follows; manganese (1.25) < copper (1.63) < zinc (1.93) < cobalt (2.35) < nickel (3.83) < lead (12.63) < cadmium (78.32). Cluster analysis was performed in order to assess heavy metal interactions between water and sediment. Accordingly, nickel, cadmium and copper are earth originated. Zinc, copper and manganese are dominated by pH. All the elemental concentrations in water and sediment are correlated except for sedimental copper.  相似文献   

2.
Spatial and temporal fractionation of trace metals and major elements in suspended particulate matter in the Seine River was investigated to study the impact of the increasing urbanization in the Greater Paris Region. Suspended sediments in the Seine River were collected between December 2008 to August 2009 upstream and downstream of Paris. They were subjected to total digestion and sequential extraction procedure certified by the Bureau Communautaire de Référence and trace metals along with major elements were analyzed with inductively coupled plasma mass spectroscopy. Metal enrichment factors increased up to eight folds after the Seine River downstream of the Greater Paris Region showing a significant contribution of urbanization. Enrichment of copper, lead and zinc downstream of Paris are followed by the increase of their reducible fraction of at least 10% implicating an increase in metals associated with iron oxides. The exchangeable fraction, which includes the carbonate-associated metals, is only significant for cadmium, nickel and zinc (more than 2 %) while the oxidisable fraction accounts for less than 20 % for the anthropogenic metals downstream except for copper. The metals can be divided to (a) “reducible” group including cadmium, lead, and zinc, associated with more than 60 % of the total Bureau Communautaire de Référence extractable metals to the reducible fraction containing mostly iron oxide phases for the downstream sites. (b) A “distributed” group including chromium, copper, and nickel that are associated to at least 3 different phase-groups: (1) oxides, (2) organic matter and sulphides and (3) mineral phases.  相似文献   

3.
黄春雷  宋金秋  潘卫丰 《地质通报》2011,30(9):1434-1441
基于对浙东沿海某典型固废拆解区重金属元素大气干湿沉降特征的研究,探讨了重金属元素干湿沉降输入对土壤环境的影响。结果表明,研究区露天焚烧等不规范的固废拆解行为造成大气质量恶化,对土地质量造成严重的负面影响。区内干、湿沉降中Cd、Cu、Pb、Zn、Ni等重金属元素的含量均远高于浙江省干、湿沉降平均值和其它相关标准值,并且其年沉降通量在省内居高,尤其是Cu、Zn两种元素每年每平方百米沉降通量分别达7108g、11420g。研究显示,大气沉降能大大增加研究区土壤重金属元素的含量水平,Cu、Zn、Cd、Pb平均年增加量分别达3426ng/g、5819ng/g、6.50ng/g、582ng/g,并且年增加率较大,Pb、Cu、Zn等重金属元素的年增加率达0.5%以上。  相似文献   

4.
Heavy metals affect the biochemical reactions that take place during anaerobic digestion processes of organic matter. In this review, the different effects observed in anaerobic digestion processes and during the production of biomethane and biohydrogen from several substrates contaminated with and/or inheriting heavy metals from the substrates themselves were discussed. It has been found that heavy metals exert important roles in biochemical reactions. Heavy metals like copper, nickel, zinc, cadmium, chromium and lead have been overwhelmingly reported to be inhibitory and under certain conditions toxic in biochemical reactions depending on their concentrations. Heavy metals like iron may also exhibit stimulatory effects, but these effects have been scantily observed. This review also concludes that the severity of heavy metal inhibition depends upon factors like metal concentration in a soluble, ionic form in the solution, type of metal species, and amount and distribution of biomass in the digester or chain of biochemical reactions which constitute the anaerobic digestion process. A majority of studies have demonstrated that the toxic effect of heavy metals like chromium, cadmium and nickel is attributable to a disruption of enzyme function and structure by binding of the metal ions with thiol and other groups on protein molecules or by replacing naturally occurring metals in enzyme prosthetic groups. This review has not found published data on the effects of heavy metals on the hydrolysis stage of anaerobic digestion process chemistry, and hence further studies are required to depict any changes.  相似文献   

5.
. Surficial sediments sampled from accreting and eroding areas along the coast of Guyana were examined for concentrations of heavy metals; aluminum, copper, chromium, iron, nickel, lead, vanadium and zinc. Twenty-four samples were collected, 12 from each of the eroding and accreting areas. For granulometric composition determination, samples were separated into particle-size fractions using sieving and hydrometer procedures. The consideration of three grain-size fractions (4.0, 5.0, and greater than 5.0 phi), plus 24 bulk samples less than 4.0 phi in diameter, required analyzing a total of 96 samples for the presence of heavy metals. The analysis employed was aquaregia digestion, followed by inductively coupled plasma optical emission spectroscopy. The statistical techniques of discriminant analysis, analysis of variance, and correlation and regression were used to analyze all obtained data. Discriminant analysis revealed that metal concentrations were statistically unique to each area. From the analysis of variance, and correlation and regression, it was discovered that the grain size of the sediment had a pronounced effect on the spatial distribution of heavy metals. The accreting area, with finer sediments, accumulated higher concentrations of heavy metals.  相似文献   

6.
In the study, the relationship between some aquatic insect species (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and some heavy metals (cadmium, lead, copper, zinc, nickel, iron and manganese) and boron were assessed using data obtained from the Ankara Stream, which flows through Ankara, the capital city of Turkey and receives high organic and industrial wastes. Sampling was carried out monthly along the Ankara Stream in 1991. environmental data were used to explain biological variation using multivariate techniques provided by the program canonical correspondence analysis ordination. The ordination method canonical correspondence analysis was applied to evaluate the relationships between environmental variables and distribution of aquatic insect larvae. Data sets were classified by two way indicator species analysis. In this study, aquatic insecta communities have been shown by canonical correspondence analysis ordination as related to total hardness, pH, cadmium, lead, copper, zinc, nickel, iron, manganese and boron. Cadmium, lead, copper and boron exceeded limits of the United States Environmental Protection Agency criteria for aquatic life. Trichopteran, Dinarthrum iranicum was an indicator of two way indicator species analysis and was placed close to the arrow representing copper. Odonate, Aeschna juncea was an indicator of two way indicator species analysis in site 10 and was placed close to the arrows representing manganese, lead, and nickel. Trichopteran, Cheumatopsyche lepida and odonate, Platycnemis pennipes were indicators of two way indicator species analysis for sites 6, 7, 11, 14, 15, 18 and were placed close to the arrows representing cadmium, boron, iron and total hardness.  相似文献   

7.
氨基膨润土对铜镍镉污染土壤的钝化修复研究   总被引:1,自引:0,他引:1  
采集土壤,加入铜、镍和镉制成重金属污染土壤。以四乙烯五胺改性膨润土和膨润土原土作为修复剂,通过模拟酸雨和混合提取剂提取有效态重金属,评价膨润土和氨基膨润土对土壤中铜、镍、镉的钝化效果。结果表明:p H=3. 5的模拟酸雨对各污染土壤中重金属离子的提取率均在0. 1%以下。混合提取剂对污染土壤中有效态金属的提取能力比模拟酸雨强很多。添加膨润土原土和氨基膨润土均能钝化土壤中的铜、镍和镉,氨基膨润土上嫁接的氨基对金属有络合作用,因而比膨润土原土对铜、镍和镉具有更强的钝化能力。综合评价表明氨基膨润土是一种对铜、镍和镉污染土壤具有应用前景的钝化修复材料。  相似文献   

8.
Five sediment cores from the fresh water region of the Vembanad wetland system were studied for the trace element contents The average concentration of iron, manganese, nickel, copper, zinc, cadmium, lead, mercury and chromium were determined. The core samples were collected using gravity type corer, digested with a mixture of nitric acid and perchloric acid and analyzed by atomic absorption spectrophotometry. Heavy metals such as iron, copper, nickel and zinc reported enrichment towards the surface of the core sediment sample collected from the centre of the lake. Lead, cadmium and mercury showed uniform distribution through out the core. Quality of the sediments were evaluated based on sediment quality guidelines, pollution load index, sum of toxic units and with effect range low/effect range median and threshold effect level/probable effect level values of Environmental Protection Agency guidelines. The degree of contamination for each station was determined. The concentration of different heavy metals has been compared with the world average concentration of shale values. Results of the analysis showed that Vembanad lake is facing serious metal pollution with increased rate of deposition.  相似文献   

9.
Water samples were analyzed for DOC and trace metals from Bagmati River within Kathmandu valley, Nepal, to understand the variation trends of DOC and trace metals and their relationship along the drainage network. The variability in organic matter and wastewater input within the Bagmati drainage basin appeared to control DOC and most of the trace metal concentration. The large input of organic matter and wastewater creates anoxic condition by consuming dissolved oxygen and releasing higher concentrations of DOC, trace elements such as nickel, arsenic, barium, cadmium, and copper with downstream distance. Concentrations of DOC and trace metals like barium and zinc showed strong relationships with human population density and suggest that human activities have strong control on these parameters along the drainage network. The DOC and most of the trace metal concentration increased with downstream distance and appeared to be directly associated with human activities. The variation trends of most of the trace metals appeared to be the same; however, concentration varied widely. Inputs of organic matter and wastewater due to human activities appeared directly to be associated for the variation of DOC and trace metals along the Bagmati drainage network within Kathmandu valley.  相似文献   

10.
Water and sediment samples were collected from 20 location of the Buriganga river of Bangladesh during Summer and Winter 2009 to determine the spatial distribution, seasonal and temporal variation of different heavy metal contents. Sequential extraction procedure was employed in sediment samples for the geochemical partitioning of the metals. Total trace metal content in water and sediment samples were analyzed and compared with different standard and reference values. Concentration of total chromium, lead, cadmium, zinc, copper, nickel, cobalt and arsenic in water samples were greatly exceeded the toxicity reference values in both season. Concentration of chromium, lead, copper and nickel in sediment samples were mostly higher than that of severe effect level values, at which the sediment is considered heavily polluted. On average 72 % chromium, 92 % lead, 88 % zinc, 73 % copper, 63 % nickel and 68 % of total cobalt were associated with the first three labile sequential extraction phases, which portion is readily bioavailable and might be associated with frequent negative biological effects. Enrichment factor values demonstrated that the lead, cadmium, zinc, chromium and copper in most of the sediment samples were enriched sever to very severely. The pollution load index value for the total area was as high as 21.1 in Summer and 24.6 in Winter season; while values above one indicates progressive deterioration of the sites and estuarine quality. The extent of heavy metals pollution in the Buriganga river system implies that the condition is much frightening and may severely affect the aquatic ecology of the river.  相似文献   

11.
Globally, aquatic ecosystems are highly polluted with heavy metals arising from anthropogenic and terrigenous sources. The objective of this study was to investigate the pollution of stream sediments and possible sources of pollutants in Nakivubo Channel Kampala, Uganda. Stream sediments were collected and analysed for heavy metal concentration using flame atomic absorption spectrophotometer. The degree of pollution in Nakivubo channelized stream sediments for lead, cadmium, copper, zinc, manganese and iron was assessed using enrichment factor, geo-accumulation index and pollution load index. The results indicated that (1) the sediments have been polluted with lead, cadmium and zinc and have high anthropogenic influences; (2) the calculation of geo-accumulation index suggest that Nakivubo stream sediments have background concentration for copper, manganese and Fe (I geo ≤ 0); (3) factor analysis results reveal three sources of pollutants as explained by three factors (75.0 %); (i) mixed origin or retention phenomena of industrial and vehicular emissions; (ii) terrigenous and (iii) dual origin of zinc (vehicular and industrial). In conclusion, the co-precipitation (inclusion, occlusion and adsorption) of lead, cadmium and zinc with manganese and iron hydroxides, scavenging ability of other metals, very low dissolved oxygen and slightly acidic to slightly alkaline pH in stream water could account for the active accumulation of heavy metals in Nakivubo stream sediments. These phenomena may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments.  相似文献   

12.
Authorities have been applying very strict regulations for the treatment of industrial wastewater recently because of the threatening level of the environmental pollution faced. Industrial wastewater containing heavy metals is a threat to the public health because of the accumulation of the heavy metals in the aquatic life which is transferred to human bodies through the food chain. Therefore, recently, researchers have been oriented toward the practical use of adsorbents for the treatment of wastewater polluted by heavy metals. The aim of this research was to determine the retention capacity of compost for copper, zinc, nickel and chromium. For this purpose, experiments in batch-mixing reactors with initial metal concentrations ranging from 100 to 1,000 mg/l were carried. It was also observed that compost could repeatedly be used in metal sorption processes. The experiments conducted indicated that compost has high retention capacities for copper, zinc and nickel, but not for chromium. Thus, compost has been approved as a potential sorbent for copper, zinc and nickel and may find place in industrial applications. Thus, solid waste which is another source of significant environmental pollution will be reduced by being converted into a beneficial product compost.  相似文献   

13.
Effects of heavy metal pollution on the soil microbial activity   总被引:8,自引:8,他引:0  
The effects of heavy metals on soil microbial processes were investigated over a period of six weeks. Analytical grade (Sigma) sulphate salts of copper, zinc and nickel were added individually and in combinations to soil samples and incubated in different plastic pots. Samples were taken from the pots forthnightly and the rates of microbial carbon and nitrogen mineralization, microbial biomass carbon and respiration were measured. The results showed the effect of metals on the measured parameters were significant (P<0.05.). By the 6th week postreatment, the rates of carbon accumulated were high in the copper (6.03 %) and copper:Zinc (5.80 %) treatments but low in the nickel and zinc (4.93 % and 5.02 % respectively). The rates of Nitrogen mineralization were 0.41 and 0.44 % in samples treated with copper and copper:zinc compared to 0.22 %–0.24 % obtained at the beginning of the experiments. Soil microbial biomass carbon declined from average value of 183.7–185.6 μg/g before treatment to as low as 100.8 and 124.6 μg/g in samples treated with copper:zinc and copper respectively.The rate of respiration of the soil microbial populations was equally inhibited by the metals. From an average rate of 2.51–2.56 μg of C/g respiration of the soil microbes declined to 0.98, 1.08 and 1.61 μg of C/g in the copper:zinc, copper and zinc treated soils by the end of the experiment. The results suggest additive or synergistic effects of the metals.  相似文献   

14.
This study introduces the application of a dynamic fuzzy neural network for fitting and simulating the adsorption of nickel, cadmium, and zinc ions in mono- and bi-metallic solutions (nickel–cadmium, nickel–zinc, and cadmium–zinc) using packed-bed columns with bone char. This neural network model has shown a flexible and self-adaptive architecture with a faster learning speed than that of traditional artificial neural approaches. Results showed that this neural network model was reliable for representing the high asymmetry behavior of concentration profiles in both mono- and bi-metallic breakthrough curves where its accuracy was quite reasonable. Breakthrough parameters for mono-component and binary systems of tested heavy metals were calculated and compared. This analysis showed that the removal of these heavy metal ions in binary systems was a strong competitive adsorption process where the presence of co-ions reduced the removal performance of bone char at fixed-bed adsorbers. Results of surface characterization of adsorbent samples with X-ray photoelectron and infrared spectroscopy supported a removal mechanism based on an ion exchange between calcium from hydroxyapatite of bone char and heavy metal ions in the solution forming new metal–phosphate interactions in the adsorbent surface.  相似文献   

15.
Heavy metal contamination and its indexing approach for river water   总被引:9,自引:2,他引:7  
The objective of the study is to reveal the seasonal variations in the river water quality with respect to heavy metals contamination. To get the extend of trace metals contamination, water samples were collected from twelve different locations along the course of the river and its tributaries on summer and the winter seasons. The concentrations of trace metals such as cadmium, cromium, copper, cobalt, iron, manganese, nickel, lead, mercury and zinc were determined using atomic absorption spectrophotometer. Most of the samples were found within limit of Indian drinking water standard (IS: 10500). The data generated were used to calculate the heavy metal pollution index of river water. The mean values of HPI were 36.19 in summer and 32.37 for winter seasons and these values are well below the critical index limit of 100 because of the sufficient flow in river system. Mercury and chromium could not be traced in any of the samples in the study area.  相似文献   

16.
Utilizing the sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) proposed by The European Community Bureau of Reference (BCR), the trace metals present in the sediments of the Ergene River, Turkey, were determined. The sediment samples were collected from 10 sampling sites and analyzed to identify the concentrations of cadmium, cobalt, chromium, copper, manganese, nickel, lead and zinc. The flame atomic absorption spectrometer was used for metal determination. The validation of the results was checked by the analysis of the BCR-701 standard reference material. The relationship existing between the sediment characteristics and metal fractions was identified using the correlation analysis. Hierarchical cluster analysis was performed to find out the grouping of the sampling sites based on the similarities of the heavy metals in the bioavailable fraction. When the extractable amounts of heavy metals are considered, the quantity of the mobile fractions (viz., acid soluble, reducible, and oxidizable) of the heavy metals is observed to be higher when compared with that of the immobile fraction (residual). This might be caused by the anthropogenic sources. Besides, it was statistically discovered that the organic matter, pH and clay contents could influence the bonding of the analyte metals in various forms. The cluster analysis revealed three clusters of the sampling stations, with group I (S5-8) and group II (S3, S4 and S9) showing higher environmental risks. The risk assessment code indicated that the highly mobile soluble fractions of Mn, Zn, Cd and Co created a high environmental risk which could result in negative impacts on the aquatic biota.  相似文献   

17.
Industrialization coupled with urbanizaton has led to stress in the Buckingham Canal which runs parallel to Bay of Bengal at a distance of around 1 km from the coastline. 4 sediment cores were collected along Ennore — Pulicat stretch to determine acid leachable trace metal concentration. Core samples were collected using gravity corer. The cores were sliced horizontally at 2.5 cm to determine the grain size, sediment composition, pH, organic matter, calcium carbonate, acid leachable trace metals; cadmium, chromium, copper, lead, zinc. The trace metals were extracted using acid mixture containing hydro fluoric acid, nitric acid and sulphuric acid and analysed by atomic emission spectrophotometer. In an attempt to infer anthropogenic input from geogenic input, several approaches including comparison with sediment quality guidelines — ecotoxicological sense of heavy metal contamination and classification by quantitative indexes such as geoaccumalation index, anthropogenic factor, enrichment factor, contamination factor and degree and pollution load index was attempted. Grain size analysis and sediment composition of core samples shows Ennore is sandy in nature having a neutral pH. Organic matter enrichment is observed to a higher extent in core 3. Core 2 at a depth of 5 cm shows organic matter of 9.4 %. calcium carbonate is totally absent at the surface sediments in core 2. Cores collected within the canal showed a higher heavy metal concentration than the cores collected from Pulicat lagoon and 2 km into the Ennore Sea. The trace metal concentration for cadmium, lead and zinc in Ennore does not pose a threat to the sediment dwelling fauna whereas chromium and copper are likely to pose a threat. Quantitative indexes place Ennore under moderately polluted. Ennore is likely to face a serious threat of metal pollution with the present deposition rates unless stringent pollution control norms are adopted.  相似文献   

18.
The use of treated urban wastewater for irrigation is a relatively recent innovation in Botswana and knowledge is still limited on its impact on soil heavy metal levels. The aim of this study is to analyze and compare heavy metal concentration in secondary wastewater irrigated soils being cultivated to different crops: olive, maize, spinach and tomato in the Glen Valley near Gaborone City, Botswana. The studied crop plots have been cultivated continuously under treated wastewater irrigation for at least 3 years. Most crop farms have sandy loam, loamy sand soils. Based on food and agriculture organization, heavy metal threshold values for crop production have been studied. Results showed that the wastewater irrigated soils in the Glen Valley have higher cadmium, nickel and copper than desirable levels, while the levels of mercury, lead and zinc are lower than the maximum threshold values recommended for crop production. The control sites show that the soils are naturally high in some of these heavy metals (e.g copper, zinc, nickel) and that crop cultivation under wastewater irrigation has actually lowered the heavy metal content. Comparing between the crops, mercury and cadmium levels are highest in soils under maize and decline linearly from maize to spinach to olive to tomato and control site. By contrast, concentrations of the other metals are at their lowest in maize and then increase from maize to spinach to olive to tomato and to control site.  相似文献   

19.
The ability of Chromolaena odorata to accumulate and serve as biomarker to lead and cadmium metals pollution load had been revealed by this study. Samples of soils and Siam weed were collected to assess impacts of solid waste disposal and traffic density on the environment. Composite sample were collected from a solid waste dumpsite, three traffic polluted areas with varying traffic density and a background site distant from traffic. Concentration of eight elements: cadmium, cobalt, chromium, copper, iron, nickel, lead and zinc were determined in soil and plant samples and correlated together. Accumulative factors like pollution load index, transfer factor, contamination factor, enrichment factor were calculated for the metals in both plants and soils and used as basis for interpreting the state of the environment and ability of C. odorata to accumulate metals. The accumulative factors of plants were generally greater than that of soil samples indicating increased accumulative capacity of the plant. The accumulations of lead and cadmium in C. odorata were remarkable with contamination factor 10.51 and 23.50, respectively and mean enrichment factors 3.52 and 6.93, respectively. Other metals had lower accumulative factors. The distribution of metals and calculated factors placed solid waste disposal site as the most polluted site while the trend observed in areas with traffic pollution depicts the ability of C. odorata to clean up metal pollution by accumulating them. It can therefore be suggested that solid waste disposal negatively affects the environment more than traffic pollution subject to the volume of traffic.  相似文献   

20.
为了研究一种高效的多种重金属污染土壤修复剂,本文采用了一种具有OH-缓释功能的改性Mg(OH)2,通过重金属污染土壤稳定化修复实验,探讨了改性Mg(OH)2对污染土壤中多种重金属(Pb、Cd、Cu、Zn)的稳定效率及对多种重金属形态分布的影响。结果表明,投加改性Mg(OH)2对土壤中多种重金属均有稳定作用,对Pb、Cd、Cu、Zn的稳定效率分别为72.42%、34.53%、87.64%和97.65%,且改性Mg(OH)2的投加使重金属交换态质量明显减少、残渣态质量增加,进一步提高了重金属的稳定性,降低了重金属生物有效性;另外,改性Mg(OH)2具有OH-缓释性,可使土壤长期保持一定的碱性,是一种经济有效的土壤修复剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号