首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the undrained behavior of natural marine clay under cyclic loading, two kinds of stress-controlled cyclic triaxial tests were conducted on natural K0-consolidated Wenzhou clay. In the Series I tests, samples were cyclically sheared until failure, and the accumulative behavior was studied; based on the results, a suitable cyclic failure criterion is suggested for natural clays. The effect of loading frequency was also investigated, and it was observed that the loading duration t is a key factor in controlling the undrained cyclic behavior. In the Series II tests, cyclic undrained tests followed by strain-controlled monotonic compression tests were carried out, and special attention was given to changes in the undrained strength after cyclic loading. The degradation of the post-cyclic peak strength was affected by the accumulative behavior during cyclic shearing, but the deviatoric stresses at the critical state were nearly constant. Finally, the accumulative behavior of natural clays was simulated using a proposed anisotropic elastic viscoplastic model with a pseudo-static method of equivalent undrained creep, and the results indicate that this equivalent creep simplification is suitable in practice. By taking the apparent overconsolidation after cyclic loading into account, the post-cyclic strength degradation can also be explained by this model.  相似文献   

2.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

3.
通过对南海重塑粉质粘土土样的大量动三轴试验结果分析,得到此种土在波浪荷载作用后不捧水抗剪强度衰化同动载作用引起的动应变幅及平均累积孔压之间的相互关系和预估公式;并通过与超固结土样的静三轴剪切试验结果的比较,发现动、静三轴两种试验结果具有很好的吻合关系。建议可用超固结土样的静三轴剪切试验同时结合部分动三轴试验来预估土样在波浪荷载作用后不排水抗剪强度衰化与平均累积孔压之间的关系。  相似文献   

4.
Non-linear analysis of undrained cyclic strength of soft marine clay   总被引:2,自引:0,他引:2  
Iwan models are used to simulate the non-linear and hysteretic behaviour of soils under cyclic loading conditions. However, the model in its original form cannot take into account the stiffness degradation which is observed during cyclic loading of soft clays. Studies show that the stiffness reduction (expressed as degradation index) can be represented as a function of the number of cycles and of a degradation parameter depending on the strain amplitude in the case of strain controlled cyclic loading tests. This degradation index has been incorporated into Iwan's series–parallel model as a single fatigue parameter to account for the degradation during cyclic loading. The comparisons made with the existing results of two marine clays tested under undrained cyclic triaxial and simple shear conditions provided an opportunity to understand the capability of the one dimensional model.  相似文献   

5.
The mechanical behavior of clay subjected to cyclic loading is important to consider in the design of the foundations of many types of structures that must resist cyclic loading, such as subgrades and offshore foundations, because clay undergoes greater settlement under cyclic loading than under static loading. The difference in settlement between these two loading patterns due to creep behavior is affected by the cyclic frequency and the cyclic stress ratio. This study investigated the effects of the frequency and cyclic stress ratio of cyclic loading on the creep behavior of a natural clay in China using stress-controlled triaxial tests. The assessed the following parameters: three frequencies, four cyclic stress ratios, and six vertical stresses. The test results indicate that the soft clay displays accelerated creep behavior under dynamic loads. A specific “limit frequency” (in this case, 0.2 Hz) and a “safe load” at which the strain of the soft clay increases very slowly were observed. The effect of the effective axial stress on the creep behavior increases with the increase in the cyclic stress ratio. Based on the tests, the critical cyclic stress ratio is 0.267 at a certain effective axial stress and frequency.  相似文献   

6.
Undrained bearing capacity of spudcan under combined loading   总被引:1,自引:0,他引:1  
The bearing capacities of spudcan foundation under pure vertical (V),horizontal (H),moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis.The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail.The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors,which are compared with published results.Ultimate limit states under combined loading are presented by failure envelopes,which are expressed in terms of dimensionless and normalized form in three-dimensional load space.The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil.  相似文献   

7.
为研究饱和海积黏土在均匀与不均匀波浪荷载作用下的循环特性,利用GDS空心圆柱扭剪仪进行了一系列不排水试验,在相同的初始固结状态下,对试样施加不同最大偏应力qmax、最小偏应力qmin的圆形及螺旋形应力路径的轴—扭联合循环载荷。分析了在考虑主应力轴旋转时,这两种不同应力路径的循环应力比RCS与动应力比δ=qmim/qmax对循环加载期间土体动力特性的影响。试验结果表明:RCSδ的增大均能提升黏土在波浪荷载下的孔压、轴向应变、双幅剪切应变及其速率,同时也能使土体轴向回弹模量与动剪切模量的衰减更严重,且δ的作用效果会随RCS的增大而增大。当RCS≤0.05时,土体在循环期间保持为“弹性安定或塑性安定”状态;而当RCS≥0.06时,土体会处于“疲劳破坏”或“塑性蠕变”状态,其具体形式由RCSδ共同决定。土体在循环过程中的轴向回弹模量与动剪切模量近似呈一定比例。  相似文献   

8.
Abstract

In this article, the degradation of the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading is studied numerically. A modified kinematic hardening constitutive model is employed to simulate the degradation of soft clay after cyclic loading. The modified model is verified by comparing the numerical simulation results with the results of centrifuge model tests. Furthermore, the modified model is applied to numerical simulations for evaluating the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading. The degradation of the lateral bearing capacity of piles in soft clay after different cyclic displacement levels and different numbers of cycles is investigated. The study reveals that the modified kinematic hardening constitutive model can effectively estimate the cyclic degradation behavior of piles in soft clay subjected to cyclic lateral loading. The degradation of the ultimate lateral bearing capacity progresses slowly with increasing cyclic displacement level for fewer cycles, and the degradation develops significantly at higher levels of cyclic displacement after applying a larger number of cycles.  相似文献   

9.
The response of bucket foundations on sand subjected to planar monotonic and cyclic loading is investigated in the paper. Thirteen monotonic and cyclic laboratory tests on a skirted footing model having a 0.3 m diameter and embedment ratio equal to 1 are presented. The loading regime reproduces the typical conditions of offshore wind turbines: very large cyclic overturning moment, large cyclic horizontal load and comparatively little, self-weight induced, vertical load. The experimental soil-foundation response is interpreted within the macro-element approach, using an existing analytical model, suitably modified to accommodate the footing embedment and the application of cyclic load. Details of the proposed model are provided together with evidences of its ability to reproduce the essential features of the experimentally observed behaviour. The results of the study aim at increasing the confidence in the use of the macro-element approach to predict the response of bucket foundations for offshore wind turbines, notably as the long-term accumulated displacements are concerned.  相似文献   

10.
ABSTRACT

One-way cyclic loading is more typical for traffic loading and cyclic triaxial test has been recognized as a useful method for solving many engineering problems. Under traffic loading, the influence of variable confining pressure on cyclic behavior of natural organic clay subjected to cyclic traffic loading is rarely reported in the literature. In this study, a laboratory investigation on undrained cyclic behavior of natural organic clay is presented and conducted by cyclic triaxial apparatus. Tests are conducted by both constant confining pressure and variable confining pressure, to simulate the loading conditions induced by passing vehicles in actual engineering. Different stress levels are also considered in this study. By comparing between the results of constant confining pressure tests and variable confining pressure tests, it shows that the one-way cyclic behavior of organic clay is influenced significantly by variation of confining pressure, in terms of pore water pressure, permanent axial strain and stress–strain hysteretic loops.  相似文献   

11.
Abstract

Under seismic loading, the soil layer is subjected to multidirectional cyclic shear stress with different amplitudes and frequencies because of the coupling of multiple shear waves and the soil element within a slope or behind a retaining wall is subjected to initial static shear stress before subjected to cyclic loading. Due to the complexity of seismic loading propagation, a phase difference exists between the initial static shear stress and cyclic shear stress. To investigate the influence of the phase difference and initial static shear stress on cyclic shear strain, cyclic modulus, and cyclic strength, a series of laboratory tests are performed on Wenzhou marine soft clay by multi-directional simple shear system, which can simulate the actual state better by controlling the horizontal cyclic stress in the x and y directions simultaneously. As the phase difference varies from 0° to 90°, the dynamic shear modulus increases and cyclic strain accumulation decreases with an increasing number of cycles. The shear strain increases with the initial shear stress.  相似文献   

12.
针对圆弧滑动面法已无法准确判断土体强度发生弱化后半圆堤整体稳定性问题,建立基于循环强度结合D-P屈服准则的拟静力有限元模型来分析半圆堤整体稳定性。分析荷载破坏包络线的变化趋势,给出提高半圆堤整体稳定性的工程建议。并在有限元数值分析结果基础上,对变量进行无量纲化,通过优化分析进行非线性拟合归一得出描述半圆堤整体稳定性的极限状态方程。以长江口深水航道治理二期工程为例,结果表明简化计算方法是可靠的,可供工程设计借鉴和使用。  相似文献   

13.
To investigate cyclic deformation behavior of natural soft marine clay-involved principal stress rotation, a series of undrained tests were conducted by using GDS hollow cylinder apparatus. The principal stress rotates 5000 cycles while the deviator stress was kept at a constant level. The tests results show that the deformation behavior of the tested samples are significantly dependent on cyclic stress ratio (CSR). Furthermore, different type of generation of axial strains occur under different CSRs. With the same CSR, the type of axial strain is different between that considering and ignoring principal stress rotation. When CSR is larger than CSR = 0.42 under principal stress rotation, the axial strain grows rapidly after a few cycles. Compared with the results conducted by cyclic triaxial results, the effect of principal stress rotation on the axial strain is significant.  相似文献   

14.
复合加载下桶形基础循环承载性能数值分析   总被引:1,自引:0,他引:1  
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。  相似文献   

15.
Abstract

For subway systems built in coastal areas, the marine sediments are subjected to regular load sequences of waves and intermittencies, resulting in more complex reactions in their cyclic behaviors compared with those under the uniform cyclic loading applied in common studies. This research involved a series of experimental investigations into the undrained behavior of undisturbed saturated marine sedimentary clay subjected to cyclic loading with periodic intermittency considering the initial deviator stress and the conventional uniform cyclic triaxial tests for comparison. The results indicate that periodic intermittency significantly increases cyclic resistance, manifested by weakening of the long-term response and decreases in the number of vibration times required to achieve a steady state. The effect is greater with longer intermittency durations. Furthermore, changes in the pore water volume during cyclic loading were analyzed via nondestructive detection based on nuclear magnetic resonance. A conversion from bound water to free water was observed, referring to vibration magnitude and times. Lastly, the macroscopic results observed in triaxial tests and the microscopic results obtained in the nuclear magnetic resonance test appear to be closely related, indicating that the use of the variation in pore water is an applicable approach to delineate microchanges.  相似文献   

16.
传统吸力基础是一个单桶结构,被广泛作为海洋平台、漂浮结构的基础,近年来也被推广到海上风电塔架。作为风电塔架基础,要充分提高其水平承载能力。为此,提出一种改进的基础形式—裙式吸力基础。采用Z_SOIL有限元软件,针对砂土地基,从水平单调加载和循环加载两个方面,对传统单桶吸力基础和裙式吸力基础进行了承载性能对比研究,得到了相应的荷载-位移曲线。研究结果表明,裙式吸力基础由于设置了"裙"结构,显著提高了其抵抗水平静载和循环水平动力荷载的能力,并能有效控制基础的水平位移,是值得推广应用的一种新型海洋工程基础形式。  相似文献   

17.
Suction bucket foundation is a typical type for offshore turbines. Scour caused by wave and current can reduce the stability of foundation and then endanger the whole structure. This paper details a series of suction bucket model tests performed in sand under wave cyclic loading. The model tests investigate the effect of scour on stability of bucket foundation by artificially excavated scour hole around the foundation. It is revealed that the behavior of foundation bearing capacity can be divided into two stages: the initial cyclic stage and the final stage (showing either cyclic stability or cyclic failure). When the wave circulation is stable, the sand on the front and back sides of the foundation is suspected to be liquefied. With the increase in scour depth, the stability of foundation is gradually reduced, the behavior of foundation gradually changes from a state of cyclic stability to cyclic failure, and the number of waves that can be withstood is drastically reduced. Finally, the height of the center of rotation of the suction bucket was observed to descend with the increase in scour depth.  相似文献   

18.
The central Alborz mountain range, located in northern Iran, neighboring the Caspian Sea and where the two Persia and Eurasia plates meet, is known as a seismologically active area. In this regard, investigation of the behavior of saturated sand deposits located in this area may be of particular interest. Saturated sand deposits are subjected to instabilities owing to liquefaction or volume change due to earthquake shakings. A particular type of saturated sand deposits is Anzali sand which is abundant in Anzali port and other cities located in this area in northern Iran. This type of sand is a representative for most sands found in this area, i.e., the southern coastal line of Caspian Sea. This research is solely focused on the volume change behavior of marine deposits of Anzali area, often characterized as Anzali sand, in terms of the settlement of a model footing located on the surface of the sand by the aid of a transparent laminar shear box apparatus. Effects of a number of factors such as the frequency of the cyclic loading, the initial density of the sand, and the sample preparation method have been investigated. Observations indicated that the density index and the frequency of loading which are proportional to the energy of an earthquake have direct effects on the accumulation and amount of the final settlement of Anzali sand.  相似文献   

19.
In offshore engineering, pile foundations are commonly constructed in marine deposits to support various structures such as offshore platforms. These piles are subjected to lateral cyclic loading due to wind, wave action, and drag load from ships. In this paper, centrifuge model tests are conducted to investigate the response of the existing single piles due to lateral cyclic loading. The cyclic loading was simulated by a hydraulic actuator. It is found that the residual lateral movement and bending strain are induced in the existing pile after each loading–unloading cycle. This is because plastic deformation is induced in the soil surrounding the existing pile during each loading–unloading cycle. By increasing the applied loads during cyclic loading–unloading process, the lateral movements and bending strains induced in the pile head increase simultaneously. As the cyclic loading varies from 10 to 50 kN, the residual pile head movement increases from 40 to 154?mm, and the residual bending strain of the existing pile varies from 100 to 260 με. The ratio of residual to the maximum pile head movements varies from 0.17 to 0.22, while the ratio of residual to the maximum bending strains is in a range of 0.12–0.55.  相似文献   

20.
The paper presents a constitutive model to describe undrained cyclic stress-strain responses of soft clays based on the equivalent visco-elastic and creep theories. The hysteretic and nonlinear stress-strain responses of soft clays are described using the equivalent visco-elastic relationship and variations of the cyclic modulus and the damping ratio with the octahedral shear strain, respectively in the model. The cyclic accumulative strain is described using the Mises creeping potential function and the associated flow rule. The method determining the model parameters is given by static and cyclic triaxial tests. The finite element method to analyze deformation of anchor foundation in soft clay under static and cyclic loads is developed based on the model. For the method, a cyclic loading time history is divided into a series of incremental loading sub-processes which include one load cycle at least. The cyclic stress-strain responses of soil elements at any time are not tracked in detail and determined by the equivalent visco-elastic calculations for every loading sub-process. The accumulative deformation of anchor foundations is calculated using the initial strain algorithm. The method has been implemented in ABAQUS Software by developing interface programs. Model tests of the suction anchors are conducted and predicted using the method. Comparisons of predicted and model test results show that the method can be used to evaluate cyclic stability and reveal the failure process and mechanism of anchor foundations by analyzing deformation time-histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号