首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
果成  吕文德 《气象》1981,7(10):28-28
为了简化Tm值的计算方法,我们提出了用t t_(12)值代替Tm值查算气压高度差订正值的方法。 大家知道,Tm=(t t_(12))/2 h/400 (1)式中Tm为气柱平均温度,t为观测时的气温,t_(12)为观测前12小时的气温,h为气压表水银槽拔海高度。 我们可以把上式改写为: (Tm-h/400)×2=t t_(12) (2) 这样在查气压高度差订正值时就不用计算Tm值,只要计算出t t_(12)值就可以了。 具体做法是先用已做好的气压高度差订正表中的  相似文献   

2.
辽宁地区ECMWF模式气温预报检验及误差订正研究   总被引:1,自引:0,他引:1  
利用2016—2018年ECMWF细网格模式12—36 h内2 m温度预报产品,选取辽宁地区65个城镇站点观测资料,评估预报产品在不同季节的预报准确率,并按季节分析固定误差订正方法和最优滑动周期订正方法对提高准确率的作用。结果表明:ECMWF模式预报产品对辽宁地区气温预报的准确率表现为,ECMWF模式最高气温冬季预报最优(城镇站点预报准确率为81.5%),最低气温夏季预报最好(城镇站点预报准确率为84.3%);采用最优滑动周期订正后,2016—2018年辽宁地区的最高气温和最低气温准确率较ECMWF模式自身分别提高了19.7%和20.5%,最低气温的预报准确率提高程度优于最高气温;在整个空间分布中,ECMWF模式对辽宁中部平原地区最高(低)气温预报准确率高于东、西部地区,辽宁东北部和西南部以及东南部的长白山余脉影响区域准确率明显低于其他区域。同时,在各季中,最高气温和夏季最低气温的订正预报能力优于其他季节;在地面晴、雨两种特征下,对辽宁地区24 h气温预报进行订正检验表明,该检验结果对辽宁地区最高(低)气温订正有一定补充作用,尤其是冬季降水出现时,最高气温预报补充订正效果最为显著。  相似文献   

3.
为讨论CMA-GFS模式与ECMWF模式对不同要素预报性能的差异,选用2019—2021年500 hPa位势高度、地面气压、地面2 m气温、12 h降水量的4种要素为对象,采用跳跃指数为评价指标,对比分析了不同区域CMA-GFS、ECMWF模式预报的不一致性特征。结果表明:1)在形势产品(500 hPa位势高度、地面气压)预报方面,两种模式多日平均预报跳跃指数和频率(即预报不一致性)随预报时效的延长而逐渐增大,总体而言CMA-GFS模式预报不一致性比ECMWF模式略显著。2)在要素产品(地面2 m气温、12 h降水量)预报方面,ECMWF模式预报的跳跃指数、频率都随预报时效的延长而逐渐增大;CMA-GFS模式预报的跳跃指数、频率随预报时效的延长出现“两头大、中间小”的变化;CMA-GFS模式预报不一致性比ECMWF模式显著,尤其短预报时效差异更明显。3)除CMA-GFS模式12 h降水预报外,同一模式相同要素预报区域范围越大预报跳跃指数越小,两者呈反比关系。4)两种模式的500 hPa位势高度、地面气压、地面2 m气温预报的跳跃指数分布均呈自南向北逐渐增大趋势,而12 h降水量预报的跳...  相似文献   

4.
东亚冬季风的变化与中国气温异常的关系   总被引:65,自引:7,他引:65       下载免费PDF全文
分析了近40年(1951—1990年)东亚冬季(12、1、2月)季风的变化及其与中国气温的关系。用两个指标定义冬季风:一个为IWS,表示冬季风的强度,另一个为IWE,表示冬季风向南扩展的程度。IWS的的主要周期为11.0年和2.2年,IWE的主要周期为7.3年和3.1年。IWS与全国气温的关系除西南高原地区外,均为明显负相关。IWE和全国气温的关系与IWS有所不同,高相关区沿东部和南部沿海及长江上游,形成U形分布。50年代IWS为正,IWE为负,所以我国北方偏冷,但U形带的气温则偏高。80年代相反,IWS  相似文献   

5.
以塔城站为例在分析单站气温日变化基本特征的基础上,就云量、风向风速等对气温变化的影响进行了分级,统计了各月2~6h的分类气温平均变量,探讨采用分类气温平均变量制作6~12h短时气温的客观统计预报方法,经检验和试用效果较好。  相似文献   

6.
邱金晶  陈锋  张珏  倪思聪 《气象科技》2020,48(4):518-528
基于地表能量守恒方程和陆面模式土壤温度计算模块,建立高速公路路面温度预报物理模型。利用2014年6月1日至2015年5月31日8个常规气象观测站和6个交通自动气象监测站逐小时观测资料对模型预报产品进行评估检验,结果表明:预报效果随提前量的减小而提高,常规站(交通站)提前1h和6h预报的平均绝对误差分别为1.64℃(1.82℃)和3.27℃和(3.69℃)。由模型对输入气象要素的敏感性分析得出:模型对2m气温最敏感,其次是相对湿度、总云量,且敏感性随着预报提前量的增加而增强。结合浙江省快速更新同化系统数值预报产品,建立浙江省高速公路路面温度预报系统,为全省提供逐12h更新、12h预报时效的逐小时高速公路路面温度精细化预报,系统提前1h和11h预报常规站(交通站)的平均绝对误差分别为2.81℃(3.23℃)和2.50℃和(2.93℃),系统对极端高(低)温预报具有较高的预报技巧。  相似文献   

7.
日常生活中量度物体采用各种各样的单位来量度,如量度一件物体的长度以尺(米),文等作单位,量度物体的重量用厅(公斤)、吨等作单位。在气象上量度降雨量则采用毫米为单位,它是用一个口径为20厘米的雨量器接收雨水,再用一个特定专用量杯量出来的。在欧美、印度等一些国家还用时为单位,其换算式为: 1毫米=0.0394时, 1时=25.4毫米。 一毫米的降雨量有多少水呢?我们不妨以一亩地的得水量来算一下。  相似文献   

8.
为了解飞机观测气象资料(AMDAR资料)的可用性,推进AMDAR资料在湖南气象预报业务中的应用,对2013年5月至2016年12月的AMDAR资料时空分布特征进行了分析,并参考美国国家环境预报中心(NCEP)提供的AMDAR资料质量控制方法,对AMDAR气温资料进行质量控制,并在此基础上对湖南范围内的AMDAR气温资料和常规高空观测气温资料(长沙、怀化、郴州)进行了对比分析。结果表明:我国AMDAR资料主要分布在100 h Pa气压层以下,起飞和降落阶段资料约占68. 75%。AMDAR气温资料数据质量稳定,气温疑误率低于0. 13%。在对比样本上,AMDAR观测气温(t_a)与常规高空观测气温(ts)存在非常显著相关性,相关系数为0. 9966,均方根误差为1. 065℃,AMDAR观测气温平均偏低0. 13℃,差值呈准正态分布,且73. 76%的差值在-1~1℃。AMDAR观测气温与常规高空观测气温的差值分布与飞行状态和飞行高度相关,上升状态AMDAR气温偏高,下降状态AMDAR气温偏低。500 h Pa高度以下,样本飞行状态多为下降,t_a较ts平均偏低0. 25℃; 500h Pa高度以上,样本飞行状态多为上升和平飞,t_a较ts平均偏高0. 03℃。  相似文献   

9.
利用2018年1—10月华南3 km区域高分辨率模式08时、20时起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72 h预报内逐24 h最高(低)气温预报质量。结果表明,72 h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08时起报的最高(低)气温预报优于20时的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6—8月预报性能总体优于其它月份;在24~48 h预报中,东北—西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20时起报的兴义站24 h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3 km高分辨率区域模式对贵州气温预报具有较好的参考价值。  相似文献   

10.
利用2018年1—10月华南3 km区域高分辨率模式08时、20时起报的气温预报和实况资料,采用线性内插法进行站点预报值处理,并从平均均方根误差及预报准确率的角度,检验分析了贵州省72 h预报内逐24 h最高(低)气温预报质量。结果表明,72 h内随着预报时效的增加,预报准确率差异较小;日最低气温预报准确率相对最高气温平均高出20%左右;08时起报的最高(低)气温预报优于20时的。同时发现,最高(低)气温的预报能力在月份上存在明显差异,6—8月预报性能总体优于其它月份;在24~48 h预报中,东北—西南向一带较贵州其它区域展现出更高的预报能力。在9个主要城市站上,最高(低)气温均表现出较高的预报技巧,其中,20时起报的兴义站24 h最低气温准确率100%。通过对2018年7月18日气温预报质量检验,最高(低)气温及35.0℃以上高温事件预报准确率均在80%左右,较好反映了天气实况。因此,华南3 km高分辨率区域模式对贵州气温预报具有较好的参考价值。  相似文献   

11.
马慧  陈桢华  徐宁军  王谦谦 《高原气象》2010,29(6):1507-1513
利用国家气候中心整编的1951—2008年中国160站的月平均气温资料,选出华南地区10个代表站,分析了华南南部前汛期气温异常的季节、年际和年代际变化的时空特征。结果表明,58年的温度变化总趋势是增加的,1950—1990年代初为相对低温期,1990年代中期开始温度明显升高。华南南部前汛期气温异常存在2,4和5年的年际周期和12年和19年的年代际周期。在研究华南南部前汛期气温异常的基础上,还分析了华南南部前汛期气温与阿拉伯海和孟加拉湾北部海温的关系,发现前一年10~11月阿拉伯海和孟加拉湾北部海域存在一个与次年华南南部前汛期气温有较好正相关的关键区(85°~97°E,5°~16°N)(简称关键区),当前一年10~11月关键区海温异常偏高(偏低),次年华南南部前汛期气温偏高(偏低),关键区海温异常和华南南部前汛期气温异常都具有准2年、准5年和准12年的振荡周期,冷、暖水年次年的华南南部前汛期环流形势存在很大的差异。  相似文献   

12.
现在许多台站都已经配备了PC-1500计算机,使用计算机观测发报能大大地减少错情,提高测报质量。但是如使用不当,结果就会出错,而且这些错误不容易被发现。例如三次观测站2时要素的反查计算在14时前进行和14吋后进行,海平面气压计算结果就会不一样。我站曾发生过这样的一次错误,原因是14时前或后进行计算在求算T_m时结果不一样。因为求算T_m时用到2时的气温和前一天14时的气温(前12小时气温)。反查计算如果在14时观测前进行T_m求算不会出错,在14时后进行就会出错,计算机会将当日的14时气温当作前12小吋气温(计算机取最近一次14时的气温资料),使T_m发生错误而导致海平面气压计算出错。  相似文献   

13.
张灵  陈丽娟  周月华  熊开国 《气象》2017,43(11):1393-1401
根据逐月气温资料、NCEP/NCAR再分析资料,利用EOF分解和合成分析等统计方法,探讨了中国夏季逐月气温持续变化的主要模态及同期的大气环流特征。结果表明中国夏季气温变化可分为三个主要的模态:第一模态为全国一致型(UM),当时间系数为正(负)时,6-8月气温为全国一致偏高(低),UM型具有明显的年代际变化特征,20世纪90年代中期以前以一致偏低为主,以后以一致偏高为主;第二模态为南、北与中间反位相的三极子型(TM),当时间系数为正(负)时,6-8月东北、内蒙古、新疆、河套地区以及江南、华南气温偏高(低),而长江流域、黄淮等地气温偏低(高),其中以8月低(高)温范围最大。TM型同时具有明显的年代际和年际变化特征,在20世纪80年代以前以负位相为主,以后以正位相为主,但近些年年际信号增强且振荡明显。第三模态为长江以南与以北反位相的偶极型(DM),当时间系数为正(负)时,6月东北地区、内蒙古及河套北部、新疆北部气温偏低(高),以南的大部地区偏高(低),至7、8月偏低(高)气温范围明显南扩,但分界线止于长江沿线。进一步诊断发现,造成中国夏季逐月气温持续性变化的不同模态对应不同的环流特征。UM型气温模态主要受到东亚上空持续而深厚的高度场距平趋势的控制,大陆高压的强弱起到重要作用;气温TM型对应着环流场的三极子型分布,与东亚-太平洋遥相关型波列有关;DM型气温模态与东北冷涡活动的位置和强度及西太平洋高度场强度有关。  相似文献   

14.
为提升北京冬(残)奥会气象服务保障能力,利用2018—2021年1月1日—3月28日欧洲中期天气预报中心(ECMWF)模式预报产品以及冬奥延庆赛区8个自动气象站的2 m气温实况,通过基于地形修正的模式偏差订正和支持向量机算法,构建赛区不同海拔高度站点72 h预报时效内逐3 h的2 m气温集成订正方法。2022年北京冬(残)奥会前夕及赛事期间应用评估表明:集成订正方法对延庆赛区2 m气温的预报准确率为0.856,平均绝对偏差为1.08℃,订正效果较单一订正方法更优,尤其针对海拔高度高出模式地形高度的站点订正性能更为突出,同时,对超阈值及关键过程的气温订正效果也表现较好。对于延庆赛区大多数站点而言,该方法订正的72 h预报时效内逐3 h的2 m气温平均绝对偏差总体上表现出一定的日变化特征,且0~24 h,24~48 h,48~72 h预报时效之间偏差变化相对平稳,但不同站点的日变化趋势存在差异。随着预报时效增加,该方法订正的2 m气温平均绝对偏差的变化趋势表现出海拔依赖性。  相似文献   

15.
利用2015—2017年湖北89个气象站地面观测温度、欧洲中心再分析资料和0~12 h预报资料回归模式输出要素与地面气温之间的关系,建立了LightGBM模型,并在2018年数据集上进行测试。结果表明,定时气温平均绝对误差由模式本身的1.8℃下降到1.1℃,2℃以内预报准确率由65.9%上升至86.6%,决定系数(拟合优度)高达0.97。该模型已经在武汉中心气象台业务化,初步选取定时气温中的极值进行2018年2—6月预报评分,24 h高、低温预报准确率分别为76.9%和91.4%,在客观产品中排名前列,较数值预报模式产品提升明显,低温预报准确率超过预报员水平。LightGBM作为一个年轻的机器学习框架,在气象要素预报方面具备良好的应用前景。  相似文献   

16.
利用乌鲁木齐市气象站1951年1月1日至2015年12月31日的逐日气温资料,以日最高气温及其升温幅度为指标,整理出乌鲁木齐市近65年升温过程数据库,将升温过程分为Ⅰ级(弱)、Ⅱ级(中等强度)、Ⅲ级(较强)、Ⅳ级(强)以及Ⅴ级(极强)5个等级,分析了乌鲁木齐市各级升温过程发生频数、持续日数、过程不同时段升温幅度、过程最高气温、过程最高气温距平偏高幅度等要素气候特征。结果如下:(1)1951—2015年,乌鲁木齐市出现升温过程5677次,平均每年87.3次,其中Ⅰ级(弱)升温过程占67.8 %。升温过程发生频数的季节分布较均匀,但在春季相对较多。近65年来,年平均升温过程发生频数在7个年代际中差异不大,没有明显的线性变化趋势。(2)1951—2015年,乌鲁木齐市5677次升温过程的平均持续日数为2.14?d,其中持续1 d的过程占43.0 %。随升温过程等级由Ⅰ级到Ⅴ级提高,过程持续日数最高出现频率也从1?d过渡到3?d。升温过程持续日数在春季4、5月份最长。(3)1951—2015年,乌鲁木齐市过程升温幅度平均为5.76℃,在春季最大、秋季最小。Ⅳ级(强)以及Ⅴ级(极强)的过程升温幅度最大的月份分别是5月和3月。65年来,乌鲁木齐市升温过程的最大24h、48h和72h升温幅度平均值分别为3.72℃、6.12℃和8.23℃,最大24 h升温幅度在冬季最大、夏季最小,最大48 h和72 h升温幅度都是在春季最大、秋季最小。(4)1951—2015年,乌鲁木齐市升温过程的最高气温平均值为14.52℃,在夏季7、8月最高,在冬季各月最低,带有显著的季节背景特征。过程最大日气温距平的平均值为2.93℃。Ⅳ级(强)和Ⅴ级(极强)升温过程的日气温距平偏高幅度最大月份分别出现在1月(11.73℃)和12月(19.10℃)。  相似文献   

17.
杨秋明 《大气科学》2021,45(1):21-36
用1979/1980~2017/2018年冬季逐日长江下游气温资料研究长江下游冬季低温日数与温度低频振荡的联系.结果表明,冬季长江下游逐日气温存在较显著的季节内振荡周期(15~25 d、25~40 d和50~70 d振荡),其中与12~2月低温日数关系最密切的是25~40 d振荡.基于2001~2018年逐日长江下游实...  相似文献   

18.
侯伟芬  王谦谦 《气象科学》2004,24(3):314-318
本文利用 4 9a(195 1 1~ 1999 12 )中国 16 0站的气温资料和近 4 0a(195 8 1~ 1997 12 )平均高度场和风场资料 ,研究江南地区气温异常时其对应的大气环流异常情况。  相似文献   

19.
利用巴楚国家基本气候站1986-2010年的气象观测数据和地面物候观测资料,采用气候倾向率和气候趋势系数方法,分析气温、降水、日照时数的变化特征;木本植物选用新疆杨(Populus bolleanalanche),垂柳(Salix babylonica),杏树(Prunus armeniaca),苹果树(Malus pumila),沙枣树(Fdeagnys Qxycarpasehlecht),对植物物候期与气候变化的相互关系进行研究。研究表明:近25年来巴楚气候增暖现象较明显,增温率为0.18~0.95℃/10a,春、秋季变暖的趋势大于冬、夏季;降水量变化趋势不明显,整体呈现减少趋势,气候倾向率为-0.61 mm/10a,春、夏降水量呈减少趋势,冬、秋两季降水量均呈增多趋势;年日照时数呈减少趋势,气候倾向率为-30.34h/10a。除春季日照时数表现为增加趋势外,其他季节均表现为不同程度的减少趋势。其中,以冬季减幅最显著,平均减少-27.09h/10a。近25a来喀什木本植物芽开放期、展叶始期、开花始期表现为一致的提前趋势, 叶变色始期和落叶始期表现推迟的趋势;影响植物物候期的主要气候因子为气温和日照时数,随气温升高、日照时数增多,植物生长季延长。木本植物春季物候期与春季气温和春季日照时数呈负相关,且相关性显著,而与冬季气温和冬季日照时数几乎没有显著相关性。木本植物物候与秋季温度呈正相关,秋季气温升高,物候期推迟。在生产生活中,根据植物的物候期变化安排农、林业生产有重要的意义。  相似文献   

20.
MODIS反照率产品在模拟北京气温中的应用   总被引:2,自引:1,他引:1  
地表反照率是制约地表能量收支平衡的基本因子,其变化会影响气温和降水等气象要素,进而影响区域乃至全球的气候。文中使用WRF模式,设计两组反照率敏感试验,探讨地表反照率参数对近地面2处气温模拟精度的影响。结果表明:(1)当北京地区地表反照率增大(减小)0.05时,气温相应降低(升高)0.1~0.5 K,气温变化从城区到郊区有一个明显的降幅,感热通量和潜热通量也相应减小(增大),且变幅主要为0~13 W/m2;(2)将控制试验和MODIS反照率敏感试验模拟结果与实况对比分析发现,两种试验的模拟结果偏低,但应用卫星反照率产品后,气温升高约0.2~0.7 K,更接近实际,即应用MODIS反照率产品替换WRF模式中原有反照率能进一步提高气温的模拟精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号