首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在野外考察过程中,于新疆乌恰地区早侏罗世康苏组沼泽相砂岩层中,发现并识别出软沉积物液化变形层,变形包括负载构造,球枕构造及卷曲变形构造。通过模拟试验的对比研究认为,该软沉积物变形机制与液化作用有关,触发沉积物液化的动力是古地震,并且根据地震震级与液化最大震中距的关系,推测出造成早侏罗世软沉积物变形的里氏地震震级为6相似文献   

2.
古地震相关的软沉积物变形构造在盆地演化中具有指示盆地及其周缘构造活动的作用.在鄂尔多斯盆地延安组岩心描述和野外调查过程中,于定边西南部DT3522井、安塞延河剖面中,发现并识别出软沉积物液化变形层,包括液化作用相关的枕状层、液化砂岩脉、液化角砾岩、泥火山,以及负载构造、球枕构造等9种变形构造.通过软沉积物变形层位对比,变形特征研究,结合区域构造背景认为,鄂尔多斯盆地延安组延7油层组沉积末期,发生了3期古地震活动,且呈现地震强度先弱后强的特征.  相似文献   

3.
叶涛  韦阿娟  高坤顺  孙哲  郭颖  李飞 《地质论评》2018,64(6):1530-1540
首次在渤海海域下古生界寒武系崮山组碳酸盐岩中识别出了软沉积物变形构造。通过对钻井岩心的详细观察与描述,识别出了液化底劈构造、液化泥晶脉、液化角砾岩等软沉积物变形构造;根据研究区变形特征,建立了其垂向演化序列,该区软沉积物变形构造可分为两段,在剖面上自下而上均表现为液化泥晶脉、液化底劈带、液化角砾岩带、层内阶梯状断层带的渐变序列。研究认为,该区软沉积物变形构造系崮山沉积期古地震作用的产物,本次新发现的古地震事件可能与古郯庐断裂带的活动有关,是中朝地台裂解为华北板块与胶辽板块的响应。  相似文献   

4.
阿尔金断裂带是青藏高原北部边界,它不仅切割了高原北部的不同构造单元,控制了高原北部的几何学特征及基本的构造格架,而且还是调节青藏高原变形和高原物质向东挤出的重要断裂之一,对它的形成时代、活动历史以及断裂带的生长过程和演化的研究是认识青藏高原形成过程和动力学问题的关键之一.本文以阿尔金断裂带中段肃北县城南部出露的中侏罗纪陆相湖沼地层为研究对象,在野外中侏罗世剖面中,共发现26层软沉积物变形层.软沉积物变形的方式主要是不同类型的砂土液化,包括负载、球-枕状构造、卷曲变形、液化角砾、液化底劈和砂火山构造;软沉积变形大多发生在细砂岩和泥质粉砂岩层中,细砂岩层易液化、变形剧烈;粒度统计显示发生液化的沙粒粒径在0.05~0.5mm之间,主要为0.2~0.3mm,这些砂土液化的软沉积物变形特征与历史地震和模拟实验获取的易液化扰动区间高度一致,因此,中侏罗世地层中发育的软沉积物变形是由于地震震动而形成.根据震级与液化最大震中距的关系,推测发生的最小震级在Ms6~6.5之间,根据软沉积变形的类别与震级之间的关系推断最大可能发生的震级为7.5级.根据软沉积变形层出现的频率和组合关系,我们认为肃北剖面反应的是一个地震幕,发生的地震事件至少在4次以上,表明在中侏罗世(古)阿尔金断裂带发生了强烈的走滑运动,并且至少断裂带已延展到肃北一带,结合索尔库里地区晚三叠纪左旋走滑活动形成的糜棱岩以及玉门地区白垩纪的火山活动和软沉积物变形的事实,指示着阿尔金断裂带至少经历了晚三叠纪、中侏罗纪、晚白垩纪及新近纪的强烈走滑活动,并且其断裂带由索尔库里地区向东西两端逐渐扩展生长,由早期百千米到上千千米、一千多千米至约两千千米长的现今规模.  相似文献   

5.
胶莱盆地为中生代残留盆地,受郯庐断裂带、牟—即断裂带活动的影响,盆地南部、东北部地震活动强烈,发育一系列与地震作用有关的地震事件沉积构造.利用大量的岩心、野外露头资料,在胶莱盆地东北部下白垩统莱阳组砂泥质沉积物中可识别出两大类地震事件沉积构造:软沉积物变形构造(液化变形构造、拉伸变形构造、挤压变形构造)和硬岩层脆性变形...  相似文献   

6.
内容提要:龙门山地区上三叠统包括卡尼阶马鞍塘组、诺利阶小塘子组与瑞替阶须家河组.通过野外研究在小塘子组与须家河组的多个层位中首次识别出丰富的地震触发成因的软沉积物变形,包括液化变形(液化角砾岩、液化滴状体、液化底劈、液化均一层等);塑性变形(卷曲变形,软布丁)以及与重力作用相关的负载、球-枕、枕状层.上述软沉积物变形是龙门山地区晚三叠世构造运动的响应,它们是印支期松潘-甘孜地体与扬子板块裂开、碰撞、逆冲走滑伴生的地震事件的记录.通过古地震事件与沉积事件结合分析,提出龙门山地区印支期的构造运动过程为:晚三叠世中期(印支构造期中期)松潘-甘孜地体与扬子板块开始裂开,古断裂走向近NS,断裂活动产生的地震于小塘子组浅海沉积中触发—系列软沉积物变形;晚三叠世晚期(印支构造期晚期)松潘-甘孜地体与上扬子板块发生陆内俯冲,地震诱发须家河组湖相沉积物变形;晚三叠世末期(印支构造期末期)松潘-甘孜地体左旋走滑逆冲于上扬子板块之上,形成松潘-甘孜山与川西前陆盆地,二者边界即现今的汶川-茂县断裂,印支期的造陆与造山伴随古地震发生.依据已识别的软沉积物液化变形位置与汶茂断裂的距离,估算出诺利阶小塘子组古地震震级约为Ms7.2;目前小塘子组液化变形记录远非距汶茂断裂最远的液化点,因而实际的古地震震级远远大于Ms7.2,应存在更强的地震事件.龙门山发生的毁灭性大地震(如2008,5,12汶川大地震Ms8)实际上于晚三叠世期间早已频繁发生,现今龙门山的活动地震带是中生代古地震带的延续.  相似文献   

7.
龙门山晚三叠世软沉积物变形与印支期构造运动   总被引:5,自引:0,他引:5  
龙门山地区上三叠统包括卡尼阶马鞍塘组、诺利阶小塘子组与瑞替阶须家河组。通过野外研究在小塘子组与须家河组的多个层位中首次识别出丰富的地震触发成因的软沉积物变形,包括液化变形(液化角砾岩液化滴状体、液化底劈、液化均一层等);塑性变形(卷曲变形,软布丁)以及与重力作用相关的负载、球-枕、枕状层上述软沉积物变形是龙门山地区晚三叠世构造运动的响应,它们是印支期松潘-甘孜地体与扬子板块裂开、碰撞逆冲走滑伴生的地震事件的记录。通过古地震事件与沉积事件结合分析,提出龙门山地区印支期的构造运动过程为:晚三叠世中期(印支构造期中期)松潘-甘孜地体与扬子板块开始裂开,古断裂走向近NS,断裂活动产生的地震于小塘子组浅海沉积中触发一系列软沉积物变形;晚三叠世晚期(印支构造期晚期)松潘-甘孜地体与上扬子板块发生陆内俯冲,地震诱发须家河组湖相沉积物变形;晚三叠世末期(印支构造期末期)松潘-甘孜地体左旋走滑逆冲于上扬子板块之上,形成松潘-甘孜山与川西前陆盆地,二者边界即现今的汶川-茂县断裂,印支期的造陆与造山伴随古地震发生。依据已识别的软沉积物液化变形位置与汶茂断裂的距离,估算出诺利阶小塘子组古地震震级约为Ms7.2;目前小塘子组液化变形记录远非距汶茂断裂最远的液化点,因而实际的古地震震级远远大于Ms7.2,应存在更强的地震事件。龙门山发生的毁灭性大地震(如2008,5,12汶川大地震Ms8)实际上于晚三叠世期间早已频繁发生,现今龙门山的活动地震带是中生代古地震带的延续。  相似文献   

8.
新疆西南天山下侏罗统软沉积物变形研究   总被引:6,自引:0,他引:6       下载免费PDF全文
乔秀夫  郭宪璞 《地质论评》2011,57(6):761-769
新疆西南天山乌恰地区早侏罗世软沉积物变形位于湖相砂岩中;由地震触发的软沉积物变形有三个层位,位于下侏罗统康苏组的顶部.变形主要类型为负载( load)、球-枕(ball-and-pillow)、滴状体(droplet)、锥形体(cusps)、液化均一层(homogeneous layer)和液化不整合(liquefie...  相似文献   

9.
杨文涛  王敏 《古地理学报》2017,19(1):117-128
河南南召盆地上三叠统太山庙组中发现的软沉积物变形构造包括同沉积断层、液化均一层与泄水脉、底劈构造、塑性变形层、碎裂岩及大型负载构造。它们集中保存在太山庙组中段深湖环境中,以该层段为界,其下水体渐深,其上水体渐浅。多数软沉积物变形构造与浊流沉积砂体相伴生,也可保存在泥岩层中,其形成可能与浊流沉积过程相关,但古地震活动是主要的触发机制。软沉积物变形的类型包括液化变形、塑性变形和脆性变形,指示了高强度的古地震活动,记录了秦岭造山带印支期一次强烈的造山活动。造山带逆冲推覆作用造成南召盆地的抬升,代表了前陆盆地系统中的楔顶沉积。  相似文献   

10.
《地学前缘》2016,(6):80-106
龙门山是由三条主要断裂组成的山体。汶川—茂县断裂,也称后山断裂,构成龙门山的西部边界;映秀—北川断裂为龙门山的中央断裂;灌县—安县断裂为龙门山的东部边界,也称前山断裂。龙门山断裂带以东为始自晚三叠世末的不同时期的前陆盆地。前陆盆地中从晚三叠世至2008年5月12日汶川地震(MS8.0),在不同年代地层中均有丰富的软沉积物变形构造(SSDS)记录,包括液化变形、重力作用变形、水塑性变形及其他相关的变形。这些变形层的地点紧邻龙门山的三条断裂,这些断裂在不同时期的活动诱发不同时期的强地震,导致当时尚未固结的沉积物变形(震积岩)。上三叠统小塘子组的软沉积的变形构造有液化角砾岩、液化滴状体、液化底辟、触变底辟、卷曲变形、拉伸布丁、负载、球-枕构造、枕状层及粒序断层等。侏罗系、白垩系主要为粗粒沉积物,除少数层位发现有液化变形外,主要的软沉积变形类型为各种形态、大尺度的砾岩负载构造。古近系为湖相沉积,沉积物粒度较细,软沉积物变形又出现大量液化变形构造,如液化混插、液化角砾岩等。2008年5月12日汶川地震(MS8.0)诱发大规模地表以下沙层液化,形成一系列液化变形构造与微地貌:液化沙堆、液化席状沙、沙火山、液化丘、坑状地形与混杂堆积。应用龙门山反射地震成果、古地震记录,结合区域构造可以给出龙门山断裂带发生的时间顺序与地震造山时期:(1)松潘—甘孜造山带与扬子板块的碰撞发生于晚三叠世早期,二者的边界即现在的汶川—茂县断裂;汶川—茂县断裂于晚三叠世末逆冲推覆造山,三叠纪末龙门山地区的山地可称松潘-甘孜山,在其东侧形成前陆盆地;晚三叠世印支造山旋回的大陆动力作用是龙门山诞生与孕育的阶段。(2)映秀—北川断裂与灌县—安县断裂的逆冲活动时间为侏罗纪—早白垩世,形成高山与前陆盆地。(3)早白垩世的龙门山已是一个由三条逆冲断裂组成的断裂带山体,可称古龙门山,山高约3 500m。(4)三条断裂在古近纪的活动诱发古近系软沉积物变形,但断裂未发生逆冲推覆造山,沉积物为湖相细粒沉积,古近纪是一个地震活动期,但不是造山的阶段。(5)中生代龙门山经历了多次瞬时地震造山与平静期山脉剥蚀降低的过程,现在的龙门山是晚新生代期间多次地震瞬时造山的产物。与众多的龙门山地学研究者不同,本文系采用另一种思维——软沉积物变形构造,即通过古地震途径讨论龙门山地区的构造演化。  相似文献   

11.
The early Jurassic soft-sediment deformation occurring within lacustrine sandstone is distributed mainly in the Wuqia region of SW Tianshan Mountains, Xinjiang, western China. Triggered by earthquakes, such deformation was found to occur in three beds overlying the lower Jurassic Kangsu Formation. The main styles of deformation structures comprise load cast, ball-and-pillow, droplet, cusps, homogeneous layer, and liquefied unconformity. The deformation layers reflect a series of three strong earthquakes at the end of early Jurassic in the Wuqia region. The differences of deformation mechanisms undergone might represent the varying magnitudes of the earthquake events. During the early Jurassic, the Wuqia region was located in a pull-apart basin controlled by the significant Talas-Ferghana strike-slip fault in central Asia, which initiated the soft-sediment deformation induced by earthquakes. Our research suggests that the paleoseismic magnitudes could have ranged from Ms 6.5 to 7.  相似文献   

12.
郑宁  宋天锐  程木伟 《地球科学》2020,45(11):4198-4206
为完善对滦平盆地西瓜园组地震引发的软沉积变形构造的认识,综合利用野外观测与室内分析相结合、宏观沉积体系与微观软沉积变形构造等分析相结合的方法,对研究区震积成因的软沉积变形构造进行了研究.结果表明,在盆内主、次控盆断层夹角位置的两处剖面中,可见枕状构造、液化砂岩脉、液化砂岩侵位、液化角砾岩、液化卷曲变形、砂岩滴落体、火焰构造、球枕构造、枕状层、负荷构造和震积不整合的组合发育,且同一剖面具有垂向多次震积作用的连续发育特点,这些震积作用均被识别在扇三角洲前缘相带内.根据这些软沉积变形发育的位置、彼此组合伴生、连续发育和区域分布的特点,可识别出连续2次大地震的发生.   相似文献   

13.
Soft-sediment deformation structures are common on passive continental margins, in trenches at subduction zones, and in strike-slip environments. Rocks from all these tectonic environments are incorporated into orogens, where soft-sediment deformation structures should be common. However, recognizing soft-sediment structures is difficult where superimposed tectonic structures are present. In seeking characteristic features of soft-sediment deformation, it is important to separate questions that relate to physical state (lithified or unlithified) from those that address the overall kinematic style (rooted or gravity driven). One recognizable physical state is liquefaction, which produces sand that has much lower strength than interbedded mud. Hence structures which indicate that mud was stronger than adjacent sand at the time of deformation can be used as indicators of soft-sediment deformation. These include angular fragments of mud surrounded by sand, dykes of sand cutting mud, and most usefully, folded sandstone layers displaying class 3 geometry interbedded with mud layers that show class 1 geometry. All these geometries have the potential to survive overprinting by later superimposed tectonic deformation; when preserved in deformed sedimentary rocks at low metamorphic grade they are indicators of liquefaction of unlithified sediment during deformation.  相似文献   

14.
New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.  相似文献   

15.
Molina  Alfaro  Moretti  & Soria 《地学学报》1998,10(3):145-150
The identification of triggering agents for soft-sedimentation structures is an enigmatic geological problem. Mainly seismic-induced soft-sediment structures have been recognized in ancient sediments, rather than those resulting from storm waves. We analyse soft-sediment deformation structures in Upper Miocene calcarenitic tempestites of the Guadalquivir Basin (Southern Spain). The most common structures are load-casts which vary in height and width from 10 centimetres to several metres. The structures are always restricted to a small part of the stratigraphic sections, in exclusive association with tempestites. The analysed soft-deformation structures are interpreted to be the result of liquidization processes. Chiefly from their inferred depositional environment, and subordinately from the deformation style, we have devised basic criteria to identify the trigger mechanism. In these soft-sediment deformation structures the liquefaction was triggered by pore pressure changes induced by cyclic and residual stress of storm waves.  相似文献   

16.
The Raniganj basin in the Damodar valley of eastern India is located within the riftogenic Gondwana Master-Basin. The fluvio-lacustrine deposits of the Lower Triassic Panchet formation of the Damodar valley in the study area preserve various soft-sediment deformation structures such as slump folds, convolute laminae, flame structures, dish-and-pillar structures, sandstone dykes, pseudonodules and syn-sedimentary faults. Although such soft-sediment deformation structures maybe formed by various processes, in the present area the association of these structures, their relation to the adjacent sedimentary rocks and the tectonic and depositional setting of the formation suggest that these structures are seismogenic. Movements along the basin margin and the intra-basinal faults and resultant seismicity with moderate magnitude (2–5 on Richter scale) are thought to have been responsible for the soft-sediment deformations.  相似文献   

17.
Earthquake, as disastrous events in geological history, can be recorded as soft-sediment deformation. In the Palaeogene of the East China Sea shelf, the soft-sediment deformation related to earthquake event is recognized as seismic micro-fractures, micro-corrugated laminations, liquefied veins, ‘vibrated liquefied layers’, deformed cross laminations and convolute laminations, load structures, flame structures, brecciation, slump structures and seismodisconformity. There exists a lateral continuum, the wide spatial distribution and the local vertical continuous sequences of seismites including slump, liquefaction and brecciation. In the Palaeogene of East China Sea shelf, where typical soft-sediment deformation structures were developed, clastic deposits of tidal-flat, delta and river facies are the main background deposits of Middle-Upper Eocene Pinghu Formation and Oligocene Huagang Formation. This succession also records diagnostic marks of event deposits and basinal tectonic activities in the form of seismites.  相似文献   

18.
Devonian in the North Qilian orogenic belt and Hexi Corridor developed terrestrial molasse of later stage of foreland basin caused by collision between the North China plate and Qaidam microplate. The foreland basin triggered a intense earthquake, and formed seismites and earthquake-related soft-sediment deformation. The soft-sediment deformation structures of Devonian in the eastern North Qilian Mts. consist of seismo-cracks, sandstone dykes, syn-depositional faults, microfolds (micro-corrugated lamination), fluidized veins, load casts, flame structures, pillow structures and brecciation. The seismo-cracks, syn-depositional faults and microfolds are cracks, faults and folds formed directly by oscillation of earthquake. The seismic dykes formed by sediment instilling into seismic cracks. Fluidized veins were made by instilling into the seismo-fissures of the fluidized sands. The load casts, flame structures and pillow structures were formed by sinking and instilling caused from oscillation of earthquake along the face between sandy and muddy beds. The brecciation resulted from the oscillation of earthquake and cracking of sedimentary layers. The seismites and soft-sediment deformations in Devonian triggered the earthquake related to tectonic activities during the orogeny and uplift of North Qilian Mts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号