首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been advocated that convective and crystal settling processes play significant, and perhaps crucial, roles in magmatic differentiation. The fluid dynamics of magma chambers have been extensively studied in recent years, both theoretically and experimentally, but there is disagreement over the nature and scale of the convection, over its bearing on fractionation and possibly over whether it occurs at all. The differential distribution of modal olivine with height in differentiated alkaline basic sills provides critical evidence to resolve this controversy, at least for small to medium-large magma chambers. Our own and others' published data for such sills show that, irrespective of overall olivine content, modal olivine contents tend to increase in a roughly symmetrical manner inwards from the upper and lower margins of the sill, i.e. the distribution patterns are more often approximately D-shaped rather than the classic S-shape generally ascribed to gravity settling. We concur with the majority of other authors that this is an original feature of the filling process which has survived more or less unchanged since emplacement. We therefore conclude that the magmas have not undergone turbulent convection and that gravity settling has usually played only a minor modifying role since the intrusion of these sills. We offer a possible explanation for the apparent contradiction between fluid dynamical theory and the petrological evidence by suggesting that such sills rarely fill by the rapid injection of a single pulse of magma. Rather, they form from a series of pulses or a continuous pulsed influx over a protracted interval during which marginal cooling severely limits the potential for thermal convection.  相似文献   

2.
Model of nucleation and growth of crystals in cooling magmas   总被引:4,自引:0,他引:4  
The nucleation and growth of liquidus phases in cooling magmas at constant rates are modeled taking into account homogeneous nucleation, diffusion-limited growth, and depletion of crystallizing component from melt, and the temperature-dependent diffusivity. The formulation of governing equations shows that four dimensionless parameters, whose physical meanings are the nucleation difficulty, the fusion enthalpy, the ratio of the growth rate to the cooling rate, and the activation energy of diffusion, control the crystallization phenomena. The nucleation behavior with time (or temperature) is determined primarily by the competition between increasing nucleation rate with cooling and the reduced supersaturation with depletion by progressive growth of crystals previously nucleated. The maximum nucleation rate and the number density of crystals increase with decreasing interfacial tension and diffusivity, and with increasing fusion enthalpy and cooling rate. Quantitative expressions of the time or temperature interval for which the nucleation remains appreciable, the peak nucleation rate, the number density of crystals and the mean crystal radius are derived as functions of controlling parameters, and can be used to estimate the cooling rate or other unknown parameters from the number density of crystals of a rock.  相似文献   

3.
Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.  相似文献   

4.
The heat of precipitation, the mean crystal size and the broadness of crystal size distribution of barium sulfate precipitating in aqueous solutions of different background electrolytes (KCl, NaCl, LiCl, NaBr or NaF), was shown to vary at constant thermodynamic driving force (supersaturation) and constant ionic strength depending on the salt present in solution. The relative inversion in the effect of respective background ions on the characteristics of barite precipitate was observed between two studied supersaturation (Ω) and ionic strength (IS) conditions. The crystal size variance (β2) increased in the presence of background electrolytes in the order LiCl < NaCl < KCl at Ω = 103.33 and IS = 0.03 M and KCl < NaCl < LiCl at Ω = 103.77 and IS = 0.09 M. At a given Ω and IS the respective size of barite crystals decreased with increasing β2 in chloride salts of different cations and remained constant in sodium salts of different anions.We suggest that ionic salts affect the kinetics of barite nucleation and growth due to their influence on water of solvation and bulk solvent structure. This idea is consistent with the hypothesis that the kinetic barrier for barium sulfate nucleation depends on the frequency of water exchange around respective building units that can be modified by additives present in solution. In electrolyte solution the relative switchover between long range electrostatic interactions and short range hydration forces, which influence the dynamics of solvent exchange between an ion solvation shell and bulk fluid, results in the observed inversion in the effect of differently hydrated salts on nucleation rates and the resulting precipitate characteristics.  相似文献   

5.
The Dead Sea brine is supersaturated with respect to gypsum (Ω = 1.42). Laboratory experiments and evaluation of historical data show that gypsum nucleation and crystal growth kinetics from Dead Sea brine are both slower in comparison with solutions at a similar degree of supersaturation. The slow kinetics of gypsum precipitation in the Dead Sea brine is mainly attributed to the low solubility of gypsum which is due to the high Ca2+/SO42− molar ratio (115), high salinity (∼280 g/kg) and to Na+ inhibition.Experiments with various clay minerals (montmorillonite, kaolinite) indicate that these minerals do not serve as crystallization seeds. In contrast, calcite and aragonite which contain traces of gypsum impurities do prompt precipitation of gypsum but at a considerable slower rate than with pure gypsum. This implies that transportation inflow of clay minerals, calcite and local crystallization of minerals in the Dead Sea does not prompt significant heterogeneous precipitation of gypsum. Based on historical analyses of the Dead Sea, it is shown that over the last decades, as inflows to the lake decreased and its salinity increased, gypsum continuously precipitated from the brine. The increasing salinity and Ca2+/SO42− ratio, which results from the precipitation of gypsum, lead to even slower kinetics of nucleation and crystal growth, which resulted in an increasing degree of supersaturation with respect to gypsum. Therefore, we predict that as the salinity of the Dead Sea brine continues to increase (accompanied by Dead Sea water level decline), although gypsum will continuously precipitate, the degree of supersaturation will increase furthermore due to progressively slower kinetics.  相似文献   

6.
Magmatic crystallization depends on the kinetics of nucleation and crystal growth. It occurs over a region of finite thickness called the crystallization interval, which moves into uncrystallized magma. We present a dimensional analysis which allows a simple understanding of the crystallization characteristics. We use scales for the rates of nucleation and crystal growth, denoted by I m and Y m respectively. The crystallization time-scale c and length-scale d c are given by (Y m 3 /I m )–1/4 and (·) m 1/2 respectively, where is thermal diffusivity. The thickness of the crystallization interval is proportional to this length-scale. The scale for crystal sizes is given by (Y m /I m )1/4. We use numerical calculations to derive dimensionless relationships between all the parameters of interest: position of the crystallization front versus time, thickness of the crystallization interval versus time, crystal size versus distance to the margin, temperature versus time. We assess the sensitivity of the results to the form of the kinetic functions. The form of the growth function has little influence on the crystallization behaviour, contrary to that of the nucleation function. This shows that nucleation is the critical process. In natural cases, magmatic crystallization proceeds in continously evolving conditions. Local scaling laws apply, with time and size given by =(Y 3/I)–1/4 and R=(Y/I)1/4, where Y and I are the rates at which crystal are grown and nucleated locally. is the time to achieve crystallization and R the mean crystal size. We use these laws together with petrological observations to infer the in-situ values of the rates of nucleation and growth. Two crystallization regimes are defined. In the highly transient conditions prevailing at the margins of basaltic intrusions, undercoolings are high and the peak nucleation and growth rates must be close to 1cm–3· –1 and 10–7cm/s, in good agreement with laboratory measurements. In quasi-equilibrium conditions prevailing in the interior of large intrusions, undercoolings are small. We find ranges of 10–7 to 10–3 cm–3 s–1 and of 10–10 to 10–8cm/s for the local rates of nucleation and growth respectively.  相似文献   

7.
大千世界万物众生,具有物以类聚、人以群分的客观规律,因而促使对客观对象的科学研究皆可采用分门别类的方法去进行,这一理念同样可以延伸到地图制图及地理信息系统等以地物、地图为研究对象的学科中。由此衍生的数据分层是地理信息系统的关键词之一,科学有效的数据分层,是数据管理、GIS地图编制、制图综合、专题制图、空间分析的前提,国内、外著名的CAD、GIS软件都充分利用了层概念和其技术。在讨论层概念的基础上,利用两个在地学界应用比较广泛的和著名的GIS软件即我国具有自主版权的MapGIS和来自美国的ArcGIS,仔细研究和分析了层概念在软件中的应用;经研究进一步表明,数据分层是GIS技术得以进行空间数据管理、表达及进行空间分析的基础;在此基础上,对主题层、数据层、图层进行了概念上的界定,以此帮助对GIS技术的理解和应用。  相似文献   

8.
An equation for the excess free energy of melts containing all major components is derived from published experimental data on equilibria between silicate liquids with either metallic iron or spinel at controlled oxygen partial pressure. The FeO activities in mafic and ultramafic magmas calculated with this equation were used to develop an oxygen barometer (geoxometer) for the association spinel + melt. Data derived with the application of the geoxometer confirm that meymechite magmas in the Siberian trap province had oxygen fugacities higher than in other magmatic systems. The origin of lower lithospheric domains with elevated redox potential can be explained by the intense diffusion of hydrogen from zones in which water-rich near-solidus melts from asthenospheric sources were emplaced into harzburgites, which had lost water and other incompatible elements in the course of earlier large-scale melting.  相似文献   

9.
The fate of pre-eruptive bubbles depends largely on their buoyancy, which can be strongly modified by the presence of crystals attached to the bubble–melt interface. We define the attachment energy and attachment force as those resulting from the attachment of a crystal to a bubble. The attachment energy is such that (1) attachment of crystals to bubbles is always favored energetically, and (2) oxide minerals attach to bubbles much more strongly than silicates, because the attachment energy is a strong function of the wetting angle. Attaching crystals to bubbles can cause bubble–crystal pairs to become neutrally buoyant. There is a critical bubble radius below which the attachment force will be strong enough to keep the pair together; we show that crystals as large as 1 mm in diameter can form neutrally buoyant pairs. For early erupted Bishop magma, if all magnetite forms neutrally buoyant pairs with gas bubbles, ca. 0.1–0.2 vol% gas can be stored in the magma; 2–3 vol% of gas can be accounted for if all minerals form neutrally buoyant aggregates. These values are an order of magnitude lower than what is inferred from melt inclusions. Hence, both magnetite-free and magnetite-rich bubbles might have existed, but only a very small fraction of them could have been neutrally buoyant. Importantly, an intrinsic association between magnetite crystals and bubbles is expected. However, most magnetite crystals in the early erupted Bishop are free of bubbles; the puzzling conclusion is that nucleation away from crystals is favored over heterogeneous nucleation on crystal substrates. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Nucleation and growth of crystals, and the resulting crystal size distribution, play a fundamental role in controlling the physical properties of magmas and consequently the dynamics of the eruptions. In the past decades, laboratory experiments demonstrated that size and shape of crystals strongly control the physical properties of magma and lava. Additionally, natural and experimental samples are usually characterized in terms of their crystal size distribution to link it with physical processes that are not directly observable, such as cooling or decompression mechanisms. In this paper, we present CrystalMoM, a new predictive model, based on the quadrature-based method of moments, developed for studying the kinetic of crystallization in volcanic systems. The quadrature-based method of moments, well established in the field of chemical engineering, represents a mesoscale modelling approach that rigorously simulates the space–time evolution of a distribution of particles, by considering its moments. The method is applied here, for the first time, for studying the equilibrium/disequilibrium crystallization in magma, modelling the temporal evolution of the moments of a crystal size distribution. The model, verified against numerical and experimental data, represents a valuable tool to infer the cooling and decompression rates from the crystal size distribution observed in natural samples.  相似文献   

11.
Carbon dioxide in magmas and implications for hydrothermal systems   总被引:21,自引:0,他引:21  
  相似文献   

12.
I. Kushiro 《Tectonophysics》1973,17(3):211-222
Partial melting experiments on spinel-lherzolite, a rock which probably occurs in relatively shallow parts of the oceanic upper mantle, demonstrate that alkali basaltic melt is formed at depths of at least 20 kbar whereas tholeiitic melt is formed at lower pressures (< 15 kbar) under anhydrous conditions. The specimen studied was a relatively iron-rich natural spinel-lherzolite (Fe/Mg+Fe=0.15) and the melts produced have ratios comparable to those obtained in basalts. Slight increase of degree of partial melting produces picritic melt over a wide pressure range. Under hydrous (water-excess) conditions, andesitic melt is produced by partial melting of the same natural spinel-lherzolite and a synthetic lherzolite. The melting experiments on two different abyssal tholeiites from the Mid-Atlantic Ridge suggest that the derivation of olivine tholeiite from a more mafic magma or a mantle peridotite (lherzolite) is possible, but is limited to depths shallower than 25 km under essentially anhydrous conditions, whereas plagioclase tholeiite may have been formed by fractional crystallization at depths of about 20 km in the presence of a small amount (~ 2 wt.%) of water.It is suggested that under mid-ocean ridges, partial melting of spinel-lherzolite at depths shallower than 60 km would produce olivine-tholeiitic magma, which differentiates at shallower levels (20–25 km) under either essentially anhydrous or hydrous (but vapor-absent) conditions to produce abyssal tholeiites of olivine-tholeiite type or plagioclase-tholeiite type. It may be also possible that the former olivine-tholeiite is generated by direct partial melting of plagioclase-lherzolite. Alkali basalts in the oceanic region may be generated at depths greater than 50 km by relatively small degree of partial melting. Along island arcs and continental margins, where the subduction zones probably exist, partial melting of lherzolite would take place in the presence of water that may be supplied by breakdown of hydrous minerals in the subducted oceanic crust, thereby producing andesitic magmas. High-alumina basalt magma could be produced by partial melting of the dehydrated oceanic crust in the subduction zone at depths between 40 and 60 km, where garnet is unstable above the solidus.  相似文献   

13.
Thin sheets of composite ice-mica have been deformed in order to simulate the development of cleavages in quartz-mica rocks. A strong initial mica preferred orientation was variably oriented to the shortening direction. Deformation parallel to the foliation results in a crenulation type cleavage developing from shear bands initiated after a component of pure shear. Deformation oblique to the foliation produces a differentiated cleavage and involves a large component of shear strain subparallel to the original anisotropy. The strain is accommodated by intra- and intercrystalline processes that produce extensive grain elongation and rearrangement of the ductile matrix, thereby forming ice vs mica rich regions. On the other hand, there is no drastic morphological change when a sample is shortened perpendicular to an original foliation: that is, where the micas lie in the plane of no shear strain. Instead, the mica fabric is strengthened and the grains in the ductile matrix are flattened.Two models are presented for the initiation, propagation and evolution of the observed crenulation versus differentiated cleavage types. These depend on mica stacking and orientation relative to the transverse properties of the sample and also on the direction of anisotropy to the XY plane of the bulk strain ellipsoid. The models invoke shear on planes of high shear strain and rotation of the shear bands and rigid mica grains into a direction approximately parallel to the bulk extension direction.  相似文献   

14.
15.
The Habit of Apatite in Synthetic Systems and Igneous Rocks   总被引:36,自引:2,他引:36  
Apatite crystals co-existing with liquid or with vapour in thesystem CaO-CaF2-P2O6-H2O-CO2 are equant whereas those precipitatedfrom a liquid during a quench are greatly elongated parallelto the c-axis and they exhibit skeletal forms. Basic rocks inthe Karroo volcanic succession of Southern Rhodesia containapatite crystals with forms very similar to the synthetic quenchapatites. Acicular apatite crystals may prove to be of valueas a criterion for the former existence of a liquid phase inrocks whose origin is debatable.  相似文献   

16.
中国东部燕山期火成岩构造组合与造山——深部过程   总被引:88,自引:8,他引:88  
中国东部燕山期火成岩构造组合可识别出两种类型,大多数的火成人有类似于安第斯和美国西部的大陆边缘弧的岩石学与地球化学性质;南岭地区则发育海西型黑云母、二云母和白云母花岗岩组合。沿岩浆构造带可识别出3个火成岩段。按岩浆--构造事件序列,北、中、南段分别为反时针、顺时针和反时针+顺时针的pTt轨迹。在中段,玄武岩岩浆底侵作用发生于陆壳增厚之后,即顺时针pTt轨迹的造山--深部过程被认为是钾玄岩组合占优势  相似文献   

17.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   

18.
冀中坳陷火成岩岩石学及地球化学特征   总被引:1,自引:0,他引:1  
冀中坳陷发育大量隐伏玄武质岩石,尤其是坳陷北部的廊固凹陷和霸县凹陷,岩石类型以玄武岩为主,辉绿岩次之,凝灰岩分布较少,火山角砾岩极少。通过岩心、镜下薄片及铸体薄片观察,主量和微量元素测试分析,表明该区火成岩为碱性玄武岩和拉斑玄武岩系列;REE配分曲线呈轻稀土元素富集型,Eu异常不明显;火成岩微量元素原始地幔标准化曲线呈强不相容元素富集。该区玄武岩的喷发环境为水下喷发;火成岩微量元素构造环境判别图解、岩石组合、岩石系列、稀土元素和微量元素特征表明该区火成岩形成于板内大陆裂谷构造环境。通过冀中坳陷玄武岩与邻区对比发现,冀中坳陷及邻区玄武岩岩浆活动具有随时代变化往北迁移的趋势,SiO2含量显示从南往北略为增加的趋势,北部稀土元素总量变化范围相对较大,轻稀土元素富集程度较南部低。  相似文献   

19.
Dioritic plugs (< 1 km across) are common associates of the late Caledonian, post-tectonic granites of the Scottish Highlands. These contain a very wide range of rock types from ultramafic through mesocratic diorites to anorthositic and granitic. These rocks form steeply dipping, wall-parallel layers and zones within the plugs. Outer layers are shown to form first, inner layers later. Mafic zones are composed of the minerals seen as phenocrysts in chilled margins and have the chemical characteristics of cumulates. The inner margins of the mafic zones reflect the onset of plagioclase crystallization. Core zones also show inward variations in mineralogy and texture which define vertical, wall-parallel cylinders. These variations are ascribed to fractional crystallization accompanying accretion of rock onto the pipe walls. Cores in different intrusions may be mafic, mesocratic, or leucocratic, which indicates vertical zonation in the bodies. The mafic cores additionally show that recharge with less evolved magma occurred in some cases. The few larger (> 1 km diameter) intrusions show examples of layering and lamination dipping at low to moderate angles. These indicate the beginning of a change from wall-dominated to floor-dominated crystallization as intrusion diameter increases. A comparison is made with the nature and origin of layering in other intrusions.  相似文献   

20.
Solubility of tin,tungsten and molybdenum oxides in felsic magmas   总被引:8,自引:0,他引:8  
Saturation versus undersaturation of granitic melts in tin, tungsten and molybdenum oxides is discussed on the basis of experimental data. Results of dry and hydrothermal experiments are evaluated under the assumption of ideal solubility of Sn, W and Mo oxides in granitic melts. A conservative interpretation arrives at concentration levels of 1000 ppm SnO2, WO3 and MoO3 respectively, considered as the maximum solubility of these components in granitic melts at 750°C-800 °C. Such values are never reached in natural granites unaffected by hydrothermal alteration and therefore even highly evolved granites are expected to be undersaturated in these metals. Consequently cassiterite and scheelite are neither common liquidus minerals of ore-bearing granites nor restite minerals from partial melting events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号