首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultraslow-spreading Southwest Indian Ridge(SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. Jourdanne hydrothermal field(27°51′S, 63°56′E) in 1998. During the COMRA DY115-20 cruise in2009, two additional hydrothermal fields(i.e., the Tiancheng(27°51′S, 63°55′E) and Tianzuo(27°57′S, 63°32′E)fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible Jiaolong in 2014–2015. The Tiancheng filed can be characterized as a lowtemperature(up to 13.2°C) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.  相似文献   

2.
Massive sulfide precipitates found in the Southwest Indian Ridge(SWIR) 49.6°E hydrothermal field are enriched in gold.Here,the mineralogy and mineral chemistry of these massive sulfides to constrain the process of gold precipitation were studied.Sulfide samples in this field include lowertemperature Zn-rich sulfides and relative higher-temperature Fe-rich sulfides.Zn-rich sulfides are dominated by sphalerite-pyrite-chalcopyrite assemblages,with concentrations of gold ranging from 9.08 to 17.0 μg/g.Fe-rich sulfides consist mainly of pyrite-marcasite-isocubanite assemblages,with gold concentrations from 2.17 to 3.79 μg/g.The significant enrichment in gold within the lowertemperature Zn-rich sulfides and the effective separation of Zn and Fe in hydrothermal precipitates at the surface of this field are here interpreted to reflect the strong temperature dependence of gold transportation and deposition within the sulfides.In Zn-rich samples,large amounts of isolated native gold grains were identified.They were found mainly as inclusions up to 8 μm in diameter,occupying porous cavities in sphalerite or in the elevated iron content rim of sphalerite.The fineness of the gold ranged from 810 to 830.Unlike previously published results on other hydrothermal fields,these data show a low gold fineness values in SWIR 49.6°E.The FeS content of sphalerite associated with gold grains ranged from 3.2 mole % to 18.9 mole %.This was higher than in other fields,indicating that the sulfur activity is relatively low during the gold precipitation process and that sulfur activity may be one of the main factors affecting gold fineness in the SWIR 49.6°E hydrothermal field.Evidence regarding gold fineness and sulfur activity suggests that gold was quite likely transported as AuHS0 rather than as a Au(HS)-2 complex.  相似文献   

3.
Electron microprobe analysis was conducted on plagioclase from the plagioclase ultraphyric basalts(PUBs)erupted on the Southwest Indian Ridge(SWIR)(51°E) to investigate the geochemical changes in order to better understand the magmatic processes occurring under ultraslow spreading ridges and to provide insights into the thermal and dynamic regimes of the magmatic reservoirs and conduit systems. The phenocryst cores are generally calcic(An_(74–82)) and are depleted in FeO and MgO. Whereas the phenocryst rims(An_(67–71)) and the plagioclase in the groundmass(An_(58–63)) are more sodic and have higher FeO and MgO contents than the phenocryst cores. The crystallization temperatures of the phenocryst cores and the calculation of the equilibrium between the phenocrysts and the matrix suggest that the plagioclase cores are unlikely to have crystallized from the host basaltic melt, but are likely to have crystallized from a more calcic melt. The enrichment in incompatible elements(FeO and MgO), as well as the higher FeO/MgO ratios of the outermost phenocryst rims and the groundmass, are the result of plagioclase-melt disequilibrium diffusion during the short residence time in which the plagioclase crystallized. Our results indicate that an evolved melt replenishing under the SWIR(51°E) drives the eruption over a short period of time.  相似文献   

4.
Morphotectonic analysis of the inside corner intersection (14.0°S) between the southern Mid-Atlantic Ridge and the Cardno fracture zone indicate a young rough massif emerging after the termination of a previous oceanic core complex. The massif, which hosts an off-axis hydrothermal field, is characterized by a magmatic inactive volcanic structure, based on geologic mapping and sample studies. Mineralogical analyses show that the prominent hydrothermal deposit was characterized by massive pyrite-marcasite breccias with silica-rich gangue minerals. Geochemical analyses of the sulfide breccias indicate two element groups: the Fe-rich ore mineral group and silica-rich gangue mineral group. Rare earth element distribution patterns showing coexistence of positive Eu anomalies and negative Ce anomalies suggest that sulfides were precipitated from diffused discharge resulted from mixing between seawater and vent fluids. Different from several low temperature hydrothermal systems occurring on other intersection dome-like massifs that are recognized as detachment fault surfaces associated with variably metamorphosed ultramafic rocks, the 14.0°S field, hosted in gabbroic-basaltic substrate, is inferred to be of a high temperature system and likely to be driven by deep high temperature gabbroic intrusions. Additionally, the subsurface fossil detachment fault is also likely to play an important role in focusing hydrothermal fluids.  相似文献   

5.
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature. A detailed analysis of multibeam bathymetry,gravity, and magnetic data were performed to investigate its variations in magma supply and crustal accretion process. The results revealed distinct across-axis variations of magma supply. Specifically, the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present, indicating a regionally decreasing magma supply. The crustal structure is asymmetric in regional scale between the conjugate ridge flanks, with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension. Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40°C beneath the ridge axis. In this work, a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities. The existence of large ridge-axis offsets may play important roles in controlling melt supply. Several large ridge-axis offsets in the eastern section(21°–25°E) caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments, enabling quasi-stable segmentation. In contrast, the western section(16°–21°E), which lacks large ridge-axis offsets, is associated with unstable segmentation patterns.  相似文献   

6.
Active hydrothermal chimneys, as the product of submarine hydrothermal activity, can be used to determine the fluid evolution and formation process of potential volcanic-hosted massive sulfide deposits. A hard-won specimen from an active hydrothermal chimney was collected in the 49.6°E ultraslow-spreading Southwest Indian Ridge (SWIR) field through a television-guided grab. A geochemical study of prominent sulfide (e.g., pyrite and chalcopyrite) included in this sample was performed using laser ablation inductively coupled plasma mass spectroscopy. The early sulfides produced at low temperature are of disseminated fine-grained anhedral morphology, whereas the late ones with massive, coarse euhedral features precipitated in a high-temperature setting. The systematic variations in the contents of minor and trace elements are apparently related to the crystallization sequence, as well as to texture. Micro-disseminated anhedral sulfides rich in Pb, As, Ni, Ba, Mn, Mo, U, and V were formed during the initial chimney wall growth, whereas those rich in Sn, Se, and Co with massive, coarse euhedral morphology were formed within the late metallogenic stage. The hydrothermal fluid composition has experienced a great change during the chimney growth. Such a conclusion is consistent with that indicated by using principal component analysis, which is a powerful statistical analysis method widely used to project multidimensional datasets (e.g., element contents in different mineral phases) into a few directions. This distribution pattern points to crystallographic controls on minor and trace element uptake during chimney growth, occurring with concomitant variations in the fluid composition evolutionary history. In this pyrite-chalcopyrite-bearing active hydrothermal chimney at the SWIR, the metal concentration and precipitation of sulfides largely occurred at the seafloor as a result of mixing between the upwelling hot hydrothermal fluid and cold seawater. Over the course of mixing, significant variations in metal solubility were caused by changes in temperature, pH, and redox conditions in the parental fluid phase.  相似文献   

7.
Bathymetric data along the Southwest Indian Ridge (SWIR) between 57°E and 70° E have been used to analyze the characteristics of thesegmentation and the morphotectonic variations along this ridge. Higheraxial volcanic ridges on the SWIR than on the central Mid-Atlantic Ridge(MAR) indicate that the lithosphere beneath the SWIR axis that supportsthese volcanic ridges, is thicker than the lithosphere beneath the MAR. Astronger/thicker lithosphere allows less along-axis melt flow andenhances the large crustal thickness variations due to 3D mantle upwellings.Magmatic processes beneath the SWIR are more focused, producing segmentsthat are shorter (30 km mean length) with higher along-axis relief (1200 mmean amplitude) than on the MAR. The dramatic variations in the length andamplitude of the swells (8–50 km and 500–2300 m respectively),the height of axial volcanic ridges (200–1400 m) and the number ofvolcanoes (5–58) between the different types of segments identifiedon the SWIR presumably reflect large differences in the volume, focusing andtemporal continuity of magmatic upwelling beneath the axis. To the east ofMelville fracture zone (60°42 E), the spreading center isdeeper, the bathymetric undulation of the axial-valley floor is less regularand the number of volcanoes is much lower than to the west. The spreadingsegments are also shorter and have higher along-axis amplitudes than to thewest of Melville fracture zone where segments are morphologically similar tothose observed on the central MAR. The lower magmatic activity together withshorter and higher segments suggest colder mantle temperatures withgenerally reduced and more focused magma supply in the deepest part of thesurvey area between 60°42 E and 70° E. The non-transformdiscontinuities show offsets as large as 70 km and orientations up toN36° E as compared to the N0° E spreading direction. We suggest thatin regions of low or sporadic melt generation, the lithosphere neardiscontinuities is laterally heterogeneous and mechanically unable tosustain focused strike-slip deformation.  相似文献   

8.
The 26th Chinese COMRA (China Ocean Mineral Resources Research & Development Association) cruise was an important cruise. The Carlsberg Ridge (CR) of the Northwest Indian Ocean and the North Atlantic Ridge (NAR), in which less investigation has been carried out for hydrothermal activities, were investigated and studied during the first two legs of the 26th COMRA cruise. During the first leg, we found one hydrothermal activity field located in the CR at 3.5 -3.8 N on the Northwest Indian Ocean Ridge (NWIR), and sampled seafloor polymetallic sulfide deposits where only abnormalities were found before. During the second leg, we found a new hydrothermal anomaly field located in the NAR at 4 -7 N. The discovery of two hydrothermal and anomaly fields filled in the gap of hydrothermal investigation and study in the corresponding regions for China.  相似文献   

9.
ABSTRACT

In this paper, we describe the results of a first pilot experiment of passive seismic monitoring near the active Longqi hydrothermal vent at the Southwest Indian Ridge during Chinese cruise DY115-30. During 102-day experiment, we recorded over 2,000 seismic events on a single ocean bottom seismometer with hydrophone close to the hydrothermal field. We classified these events into the following three classes based on their time–frequency characteristics: (1) volcano tectonic microearthquakes (VTMs); (2) regional earthquakes; (3) short-duration events (SDEs). We preliminarily located the 1,277 VTMs using a single-station location method. Our results revealed hypocenters primarily beneath the axial valley ridge which is about 10?km away from hydrothermal vent and extending to the upper mantle at a depth of 15?km. Two discrete swarms of VTMs occurred during our survey period. The SDEs show a complex frequency characteristics ascribed to clusters of monochromatic waves around different frequencies. This suggests that SDEs result from combination of harmonic waves resonating in fluid-filled pipes and cracks.  相似文献   

10.
A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge(SMAR) was newly found during the 22 nd cruise carried out by the China Ocean Mineral Resources Research Development Association(COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the26 th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types:(1) the Ferich sulfide, which contains mainly pyrite and chalcopyrite;(2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and(3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite(isocubanite and possible coarse pyrite), fine pyrite,sphalerite(marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations(Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals(Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a"chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature.  相似文献   

11.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

12.
The morphological characteristics of the segmentation of the Central Indian Ridge (CIR) from the Indian Ocean Triple Junction (25°30S) to the Egeria Transform Fault system (20°30S) are analyzed. The compilation of Sea Beam data from R/VSonne cruises SO43 and SO52, and R/VCharcot cruises Rodriguez 1 and 2 provides an almost continuous bathymetric coverage of a 450-km-long section of the ridge axis. The bathymetric data are combined with a GLORIA side-scan sonar swath to visualize the fabric of the ridge and complement the coverage in some areas. This section of the CIR has a full spreading rate of about 50 mm yr–1, increasing slightly from north to south. The morphology of the CIR is generally similar to that of a slow-spreading center, despite an intermediate spreading rate at these latitudes. The axis is marked by an axial valley 5–35 km wide and 500–1800 m deep, sometimes exhibiting a 100–600 m-high neovolcanic ridge. It is offset by only one 40km offset transform fault (at 22°40S), and by nine second-order discontinuities, with offsets varying from 4 to 21 km, separating segments 28 to 85 km long. The bathymetry analysis and an empirical orthogonal function analysis performed on across-axis profiles reveal morphologic variations in the axis and the second-order discontinuities. The ridge axis deepens and the relief across the axial valley increases from north to south. The discontinuities observed south of 22°S all have morphologies similar to those of the slow-spreading Mid-Atlantic Ridge. North of 22°S, two discontinuities have map geometries that have not been observed previously on slow-spreading ridges. The axial valleys overlap, and their tips curve toward the adjacent segment. The overlap distance is 2 to 4 times greater than the offset. Based on these characteristics, these discontinuities resemble overlapping spreading centers (OSCs) described on the fast-spreading EPR. The evolution of one such discontinuity appears to decapitate a nearby segment, as observed for the evolution of some OSCs on the EPR. These morphological variations of the CIR axis may be explained by an increase in the crustal thickness in the north of the study area relative to the Triple Junction area. Variations in crustal thickness could be related to a broad bathymetric anomaly centered at 19°S, 65°E, which probably reflects the effect of the nearby Réunion hotspot, or an anomaly in the composition of the mantle beneath the ridge near 19°S. Other explanations for the morphological variations include the termination of the CIR at the Rodriguez Triple Junction or the kinematic evolution of the triple junction and its resultant lengthening of the CIR. These latter effects are more likely to account for the axial morphology near the Triple Junction than for the long-wavelength morphological variation.  相似文献   

13.
In this paper we use a temperature and salinity based mixing model to assess the dilution of Antarctic Bottom Water (AABW) as it moves away from the Weddell Sea and into the Southwest Indian Ocean. By combining these results with CFC tracer measurements we have been able to make direct estimates of the large-scale translation rates of AABW in this region. We confirm that there is a major northward flow of AABW via a gap in the Southwest Indian Ridge at 30°E, and thence across the Agulhas Basin into the Mozambique Basin, with a translation rate from the Greenwich Meridian of 0.8–1.0 cm s−1 and a volume transport between the two basins of 1.5×106 m3 s−1. A second, smaller flow cuts the Del Cano Rise through the Prince Edward Fracture Zone but is indistinguishable from the general bottom waters once on the northern side of the rise. The third flow moves eastward along the southern flank of the Del Cano Rise to pass north of the Conrad Rise. This has bottom velocities of 0.7 cm s−1 and a volume transport of 1.6×106 m3 s−1. This water is probably the source of the AABW-rich Circumpolar Deep Water that flows through the gap to the west of Crozet Island, and which is traceable again at stations on the northern flanks of the ridge. Flow between the Conrad Rise and the Del Cano Rise is complicated by the influence of a fourth flow, the AABW that passes south of the former and thence into the Crozet Basin via the Crozet-Kerguelen Gap. We suggest that a portion of this flow loops into the channel between the Del Cano Rise and the Conrad Rise, modifying the bottom waters at the easternmost stations within this channel. We will go on in Part 2 of this paper to use these results to estimate the dissolution rates of silica in the SWINDEX area.  相似文献   

14.
The ZoNéCo 1 and 2 cruises of Ifremer's Research Vessel L'Atalante, collected new swath bathymetry and geophysical data over the southern and northern segments of the basins and ridges forming the Loyalty system. Between the two surveyed areas, previous studies found evidence for the resistance of the Loyalty Ridge to subduction beneath the New Hebrides trench near 22°S–169°E. On the subducted plate, except for seismicity related to the downbending of the Australian plate, recorded shallow seismicity is sparse within the Loyalty system (Ridge and Basin) where reliable focal mechanism solutions are almost absent.Swath bathymetry, seismic reflection and magnetic data acquired during the ZoNéCo 1 and 2 cruises revealed a transverse asymmetric morphology in the Loyalty system, and an along-strike horst and graben structure on the discontinuous Loyalty Ridge. South of 23°50S and at 20°S, the two WSW-ENE-trending fault systems, respectively, sinistral and dextral, that crosscut the southern and northern segments of the Loyalty system, are interpreted as due to the early effects of collision with the New Hebrides Arc. A NNW-SSE trend, evident along the whole Loyalty system and on the island of New Caledonia, is interpreted as an inherited structural trend that may have been reactivated through flexure of the Australian lithospheric plate at the subduction zone.Overall then, the morphology, structure and evolution of the southern and northern segments of the Loyalty system probably result from the combined effects of the Australian plate lithospheric bulge, the active Loyalty-New Hebrides collision and the overthrust of the New Caledonian ophiolite.  相似文献   

15.
A bathymetric and magnetic survey of the California Seamount region (17°40′N × 124°00′W) shows that existing charts are in error. California Seamount is a peak extending to within 454 m (248 fathoms) of the surface. Its true location is 17°41′N × 124°01′W, 25 km southwest of the charted position. Near the old charted position there is an elongated feature which extends to within 1818 m (994 fathoms) of the surface. Both features are located on the Clarion Fracture Zone.  相似文献   

16.
Izvestiya, Atmospheric and Oceanic Physics - Areas with large gradients and anomalous variations in geomagnetic and radiation fields have been revealed and mapped at the northwestern foot of the...  相似文献   

17.
Kravchishina  M. D.  Lein  A. Yu.  Boev  A. G.  Prokofiev  V. Yu.  Starodymova  D. P.  Dara  O. M.  Novigatsky  A. N.  Lisitzin  A. P. 《Oceanology》2019,59(6):941-959
Oceanology - The article discusses the preliminary results of plume and bottom sediment studies of the Trollveggen hydrothermal vent field based on data from cruise 68 of the R/V Akademik Mstislav...  相似文献   

18.
Samples from mytilid mollusk and alvinellid polychaet communities and associated fauna were collected during cruise 49 of R/V Akademik Mstislav Keldysh at 9° N of the East Pacific Rise. The mytilids Bathymodiolus thermophylus occupied zones of diffuse releases of hydrothermal solutions with temperature anomalies a few degrees in amplitude. The alvinellid assemblages were located in the hottest parts of hydrothermal vents (~ 40°C) over sulfide mounds. The taxonomic compositions of these kinds of assemblages are different. The taxonomic richness of mytilid communities is almost twice higher. A comparison of the samples using Jaccard’s index showed a greater similarity among the alvinellid samples than that between the mytilid ones. With respect to the species number, polychaets formed the most diverse group, while gastropods were the second most diverse. The dominant species had greater proportions in alvinellid communities than in mytilid ones. This study showed great differences between the mytilid and alvinellid associations in their species composition and community structure.  相似文献   

19.
Methane is a useful tracer for studying hydrothermal discharge, especially where the source fluids are of low temperature and lack metal precipitates. However, the dual origins of deep-sea methane, both chemical and biological, complicate the interpretation of methane observations. Here, we use both the concentration and stable carbon isotopic composition (δ13C) of dissolved methane to trace hydrothermal plumes and identify the source and behavior of methane at two sites of newly discovered hydrothermal activity on the Central Indian Ridge (11–13°S). At both sites, methane and optical anomalies between 2500 and 3500 m at all stations indicate active hydrothermal discharge. We compared methane concentrations and δ13C at three stations, two (CTIR110136 and CTIR110208) with the most prominent anomalies at each site, and a third (CTIR110140) with near-background methane values. At stations CTIR110136 and CTIR110208, the concentration and δ13C of methane in distinct plumes ranged from 3.3 to 42.3 nmol kg−1 and −30.0 to −15.4‰, respectively, compared to deep-water values of 0.5 to 1.2 nmol kg−1 and −35.1 to −28.9‰ at the station with a near-background distal plume (CTIR110140). δ13C was highest in the center of the plumes at CTIR110136 (−15.4‰) and CTIR110208 (−17.8‰). From the plume values we estimate that the δ13C of methane in the hydrothermal fluids at these stations was approximately −19‰ and thus the methane was most likely derived from magmatic outgassing or the chemical synthesis of inorganic matter. We used the relationship between δ13C and methane concentration to examine the behavior of methane at the plume stations. In the CTIR110208 plume, simple physical mixing was likely the major process controlling the methane profile. In the CTIR110136 plume we interpret a more complicated relationship as resulting from microbial oxidation as well as physical mixing. We argue that this difference in methane behavior between the two areas stems from a distinct bathymetric dissimilarity between the two stations. The location of CTIR110208 on the open slope of a ridge allowed rapid plume dispersion and physical mixing, whereas the location of CTIR110136 in a small basin surrounded by wall structures inhibited physical mixing and enhanced microbial oxidation.  相似文献   

20.
Seafloor acoustic and photographic imagery combined with high- resolution bathymetry are used to investigate the geologic and tectonic relations between active and relict zones of hydrothermal venting in the TAG (Trans-Atlantic Geotraverse) hydrothermal field at 26°08N on the Mid-Atlantic Ridge (MAR). The TAG field consists of a large, currently active, high-temperature mound, two relict zones (the Alvin and Mir zones), and an active low-temperature zone. The active mound and the Alvin relict zone lie along a series of closely-spaced, axis-parallel (NNE-trending) faults in an area of active extension east of the neovolcanic zone. The Alvin zone extends for 2.5 km along these faults from the valley floor onto the eastern wall, and consists of at least five mounds identified using DSL-120 sidescan sonar and bathymetric data. The existence of sulfide structures on most of these mounds is verified with near-bottom electronic still camera (ESC) images from the Argo-II deep-towed vehicle, and is confirmed in at least one case with collected samples. Two of these mounds were previously unidentified. The existence of these mounds extends the length of the Alvin zone by ~0.5 km to the south. Much of the Alvin relict zone appears to be buried by debris from a large mass wasting event on the eastern wall of the median valley. The Mir zone, located on normal fault blocks of the eastern valley wall, cannot be clearly identified in the sidescan data and no structural connections from it to the active mound or Alvin zone can be discerned. The active mound is located at the intersection of an older oblique fault set with the younger axis- parallel faults which extend into the Alvin relict zone, and no fresh volcanics are observed in the vicinity of the mound. The fact that both the active mound and the Alvin relict zone lie along the same set of active, axis-parallel faults suggests that the faults may be a major control on the location of hydrothermal activity by providing pathways for fluid flow from a heat source at the ridge axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号