首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical method of analysis based on elasticity theory is presented for the analysis of axially and laterally loaded pile groups embedded in nonhomogeneous soils. The problem is decomposed into two systems, namely the group piles acted upon by external applied loads and pile–soil interaction forces, and a layered soil continuum acted upon by a system of pile–soil interaction forces at the imaginary positions of the piles. The group piles are discretized into discrete elements while the nonhomogeneous soil behaviour is determined from an economically viable finite element procedure. The load–deformation relationship of the pile group system is then determined by considering the equilibrium of the pile–soil interaction forces, and the compatibility of the pile and soil displacements. The influence of soil nonlinearity can be studied by limiting the soil forces at the pile–soil interface, and redistributing the ‘excess forces’ by an ‘initial stress’ process popular in elasto-plastic finite element analysis. The solutions from this approach are compared with some available published solutions for single piles and pile groups in homogeneous and nonhomogeneous soils. A limited number of field tests on pile groups are studied, and show that, in general, the computed response compares favourably with the field measurements.  相似文献   

3.
Uncoupled analysis of stabilizing piles in weathered slopes   总被引:15,自引:0,他引:15  
This paper describes a simplified numerical approach for analyzing the slope/pile system subjected to lateral soil movements. The lateral one-row pile response above and below the critical surface is computed by using load transfer approach. The response of groups was analyzed by developing interaction factors obtained from a three-dimensional nonlinear finite element study. An uncoupled analysis was performed for stabilizing piles in slope in which the pile response and slope stability are considered separately. The non-linear characteristics of the soil–pile interaction in the stabilizing piles are modeled by hyperbolic load transfer curves. The Bishop's simplified method of slope stability analysis is extended to incorporate the soil-pile interaction and evaluate the safety factor of the reinforced slope. Numerical study is performed to illustrate the major influencing parameters on the pile-slope stability problem. Through comparative studies, it has been found that the factor of safety in slope is much more conservative for an uncoupled analysis than for a coupled analysis based on three-dimensional finite element analysis.  相似文献   

4.
现行的桩基设计方法主要基于线弹性理论及采用半经验假定,难以准确地检验长桩在土体非线性条件下的稳定性。基于非线性有限单元分析理论,提出了高性能桩单元分析法用于非线性分析,可直接检验单桩稳定性且无需假定桩的计算长度系数。在桩单元推导过程中,通过整合在单元内部的连续弹簧以考虑土-结构相互作用(SSI),能够大幅提升计算效率。使用牛顿-拉夫逊迭代法进行迭代运算,利用推导的相应单元切线刚度矩阵预测位移,并通过割线关系减少每一步迭代中产生的误差,在桩的大变形条件下采用更新拉格朗日法确定平衡条件。算例验证表明,桩单元模型在考虑土体非线性条件下,能高效、可靠地对单桩进行分析和设计。  相似文献   

5.
水平荷载下导管架平台桩基础的非线性有限元分析   总被引:2,自引:0,他引:2  
导管架平台桩基础的控制荷载主要为风荷载、波浪荷载、地震荷载等水平荷载,为研究水平荷载下导管架平台桩基础的承载特性,采用非线性有限元分析方法对水平荷载下桩-土之间的相互作用进行研究,提出了有效模拟桩基水平承载特性的有限元模型,分析了模型桩的刚度、直径、土质参数中水平土压力系数、剪胀角对桩基承载特性的影响及水平荷载下群桩承载特性,并将有限元计算结果与API规范及模型试验结果进行对比。研究结果表明,非线性有限元分析方法分析水平荷载下桩-土相互作用是可行的,计算结果可为导管架平台的桩基设计提供参考。  相似文献   

6.
旋喷群桩复合地基承载特性的数值分析   总被引:2,自引:0,他引:2  
旋喷桩加固软土地基在各种地基处理工程中得到了广泛应用。对旋喷桩的研究多数集中在其施工工艺的改进上,或者针对单桩的承载特性进行研究,而对旋喷群桩的承载特性则研究不多。根据工程实际情况,采用基于MIDAS-GTS的三维有限元分析技术,通过改变旋喷群桩的布置方式、桩弹性模量、桩长、桩径、桩距等设计参数及桩-土接触面等参数对旋喷群桩复合地基承载特性的影响进行了研究。研究表明:旋喷桩加固软土地基主要减小了地表至桩底深度范围内土体的竖向沉降,对桩底下方的土体沉降基本无影响;提高旋喷桩桩径及材料强度会提高复合地基承载能力;不同旋喷桩布置方式、桩-土之间是否设置Goodman接触面单元对地基承载能力基本无影响。  相似文献   

7.
This paper investigates the soil displacements and excess pore pressures induced by driven piles using a combined 3D finite and infinite element approach. The analyses are compared with analytical evaluations and field measurements. Consolidation analysis is conducted to illustrate the variation in pore pressure with time. A technique of drilling drainage holes on the pipe pile is proposed in this paper to accelerate the dissipation of pore pressure to improve the performance of displacement piles. It has been noticed that optimal performance of piles can be obtained by assigning openings in piles within the bottom 50% of the pile length.  相似文献   

8.
In order to gain a better understanding of pile-soil interaction under lateral loading, this paper presents a numerical analysis which combines the infinite and finite element method. Interest is focused on the group effect on ultimate lateral soil resistance. Firstly, a single isolated pile is analysed and reasonably good agreement is found between existing analytical solutions and results obtained by the present method. A limited parametric study is also presented and some parameters influencing the ultimate lateral soil resistance are identified. The analysis of pile groups is then considered and it is shown that the group effect tends to reduce pile capacity when the spacings between piles are within the practical ranges. The extent of the reduction depends on the arrangement of piles within the group.  相似文献   

9.
考虑桩土侧移的被动桩中土拱效应数值分析   总被引:1,自引:0,他引:1  
陈福全  侯永峰  刘毓氚 《岩土力学》2007,28(7):1333-1337
被动桩对侧向位移的土层起到遮拦作用的机制主要是土拱效应。采用土工有限元软件Plaxis Tunnel 3D 1.2,对堆载荷载作用下邻近桩基中的土拱效应产生机制和性状进行三维数值分析,指出目前被动桩中土拱效应二维有限元分析存在的问题。考虑桩土侧移与相对位移,再利用土工有限元软件Plaxis2D 8.2详细地研究了侧向土体位移大小、桩身水平位移大小、土体性质以及桩土接触面性质等影响因素对土拱效应性态和桩土荷载分担比的影响。  相似文献   

10.
The paper presents a semi-analytical method of calculating the response of a pile group. The approach is based on tying the displacement at any point of the soil mass around a pile or group of piles to the displacements experienced by the piles themselves. This is done by multiplying the pile displacements by decay functions. Application of the principle of minimum potential energy and calculus of variations to the resulting displacement field formulation leads to the differential equations for the soil and piles. Solution of these differential equations using finite differences and the method of eigenvectors leads to the desired displacement field in the soil and deflection profiles of the piles. The method produces displacement fields that are very close to those produced by the finite element method at a fraction of the cost. To illustrate the ease of application of the method, it is then used to prepare pile group efficiency charts for some typical soil modulus profiles.  相似文献   

11.
12.
非均质地基中群桩竖向荷载沉降关系分析   总被引:2,自引:0,他引:2  
江杰  黄茂松  顾倩燕 《岩土力学》2008,29(8):2092-2096
运用剪切位移法计算了桩轴向荷载传递因子。对于桩端采用线性的荷载传递函数,推导了基于弹塑性模型的单桩竖向荷载沉降的解析解。分析过程中考虑了土体强度沿深度线性变化的特性和桩土间的滑移现象,因此更符合大部分土体的实际性状。在此基础上,建立了考虑桩土滑移的桩-桩相互作用系数的计算公式,并将上述方法应用于群桩的分析,获得了群桩的荷载沉降特性。该分析方法克服了目前应用较多的弹性理论方法夸大桩土相互作用的缺点,单桩和群桩的荷载沉降曲线的分析结果和实测数据吻合,证明了该方法的合理性。  相似文献   

13.
复合地基承载特性的弹塑性分析   总被引:1,自引:1,他引:0  
对桩及承台采用线弹性有限元模型,对承台下桩周土采用弹塑性有限元模型,对群桩以外的土体采用线弹性无限元模型,在桩土接触面上设置接触面单元,利用三维弹塑性有限元对桩%D土%D承台相互作用进行了分析。得出了如下结论 :承台下桩顶反力总体表现出角桩最大,边桩次之,中桩最小的分布规律,随着作用在承台上的荷载增大,桩顶反力趋于均匀分布,承台下桩侧摩阻力是由桩端向桩顶逐渐发展的,承台对桩上部侧摩擦阻力存在削弱作用。为了验证本文方法的可行性,对承台下有九桩的情况进行了静载试验,将试验结果与本文计算结果进行了比较。  相似文献   

14.
Numerical analysis of axially loaded vertical piles and pile groups   总被引:3,自引:0,他引:3  
A numerical method, based on a simplified elastic continuum boundary element method, is presented for the settlement analysis of axially loaded vertical piles and pile groups. The soil flexibility coefficients are evaluated using the analytical solutions for a layered elastic half space. Results are presented and compared with existing published solutions for the following cases: (i) piles in homogeneous soil, (ii) piles in finite soil layer, (iii) piles end-bearing on stiffer layer, (iv) piles socketted into stiffer bearing layer, and (v) piles in Gibson soil. Reasonably good agreement is obtained between the present solutions and existing published solutions.  相似文献   

15.
Piles and diaphragm wall-supported berthing structure on marine soils are loaded laterally from horizontal soil movements generated by dredging. The literature on the adequacy of the finite element method modeling of berthing structure to analyze their behavior during dredging is limited. This paper describes a finite element approach for analyzing the lateral response of pile and diaphragm wall during dredging. Piles are represented by equivalent sheet-pile walls and a plane strain analysis using the finite element method is performed. Results from the finite element method are compared with full-scale field test data. Full-scale field test was conducted on a bearing structure to measure the lateral deflection on pile and diaphragm wall for their full length using inclinometer during dredging in sequence. The finite element method results are in good agreement with full-scale field results. Conclusions are drawn regarding application of the analytical method to study the effect of dredging on piles and diaphragm wall-supported berthing structures.  相似文献   

16.
Piles used for the stabilization of slopes have to be adequately designed to resist the induced lateral loads due to the movement of the unstable slope. In this paper, a numerical method is presented for the analysis of this problem. In this approach, the piles are modelled using beam finite elements. The soil response at the individual piles is modelled using the modulus of subgrade reaction and pile–soil–pile interaction considered using the theory of elasticity. Two case histories, one for single pile and the other for pile group, are analysed which show that the numerical model can predict the general characteristics of the piles reasonably well. The study suggests that the design of the piles based on the computed response from single pile analysis, ignoring group effects, may be unduly conservative.  相似文献   

17.
An investigation is made to present analytical solutions provided by a Winkler model approach for the analysis of single piles and pile groups subjected to vertical and lateral loads in nonhomogeneous soils. The load transfer parameter of a single pile in nonhomogeneous soils is derived from the displacement influence factor obtained from Mindlin's solution for an elastic continuum analysis, without using the conventional form of the load transfer parameter adopting the maximum radius of the influence of the pile proposed by Randolph and Wroth. The modulus of the subgrade reaction along the pile in nonhomogeneous soils is expressed by using the displacement influence factor related to Mindlin's equation for an elastic continuum analysis to combine the elastic continuum approach with the subgrade reaction approach. The relationship between settlement and vertical load for a single pile in nonhomogeneous soils is obtained by using the recurrence equation for each layer. Using the modulus of the subgrade reaction represented by the displacement influence factor related to Mindlin's solution for the lateral load, the relationship between horizontal displacement, rotation, moment, and shear force for a single pile subjected to lateral loads in nonhomogeneous soils is available in the form of the recurrence equation. The comparison of the results calculated by the present method for single piles and pile groups in nonhomogeneous soils has shown good agreement with those obtained from the more rigorous finite element and boundary element methods. It is found that the present procedure gives a good prediction on the behavior of piles in nonhomogeneous soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A variational approach for the analysis of vertical deformation of pile groups is presented. The method assumes that the deformation of piles can be represented by a finite series. The method applies the principle of minimum potential energy to determine the deformation of piles. Using this method, an analytical solution for pile groups in soil modelled by the theoretical load–transfer curves can be obtained rigorously. Analysis of field tests indicates that the method can predict the performance of pile groups reasonably well.  相似文献   

19.
This paper focuses on an analysis by the boundary element method (BEM) of the pile-to-pile interaction for pile groups with dissimilar piles of different pile lengths embedded in saturated poroelastic soil. The behaviour of the poroelastic homogeneous soil is governed by Biot’s consolidation equations. The pile–soil system is decomposed into extended soil and fictitious piles. Considering the compatibility of vertical strain between fictitious piles and soil, the second kind of Fredholm integral equations were obtained to predict the axial force and settlement along pile shafts numerically. For the analysis of the interaction factor, two loading conditions for a two-dissimilar-pile system were proposed: (a) only one pile is loaded and (b) each pile is subjected to a load proportional to the pile length. Furthermore, the two-pile system was extended to pile groups with a rigid cap to capture the optimum design where each pile shares the same loading at the pile heads. The optimum results require shortening the peripheral piles and elongating internal piles, and the consolidation effect needs to be considered due to the adjustment of loading distribution among piles.  相似文献   

20.
A hybrid boundary element formulation for the steady state analysis of piles and pile groups embedded in a soil stratum in which the modulus increases linearly with depth is presented. The piles are represented by compressible columns or flexible beams and the soil as a hysteretic, layered medium. The explicit Green's function corresponding to dynamic loads in the interior of a layered stratum, developed earlier by Kausel is used in the study. The governing differential equations for the pile domain are solved for a distributed periodic loading intensity and those for the soil domain by a system of boundary elements at the pile-soil interface. These are then assembled into a system of algebraic equations by satisfying interface equilibrium and compatibility. The results of the analysis have been compared against those from alternative formulations, e.g. finite elements, and confirm the accuracy of the proposed formulation. Representative results for single piles and pile groups are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号