首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The numerical simulation of reactive mass transport processes in complex geochemical environments is an important tool for the performance assessment of future waste repositories. A new combination of the multi-component mass transport code GeoSys/RockFlow and the Gibbs Energy Minimization (GEM) equilibrium solver GEM-Selektor is used to calculate the accurate equilibrium of multiple non-ideal solid solutions which are important for the immobilization of radionuclides such as Ra. The coupled code is verified by a widely used benchmark of dissolution–precipitation in a calcite–dolomite system. A more complex application shown in this paper is the transport of Ra in the near-field of a nuclear waste repository. Depending on the initial inventories of Sr, Ba and sulfate, non-ideal sulfate and carbonate solid solutions can fix mobile Ra cations. Due to the complex geochemical interactions, the reactive transport simulations can describe the migration of Ra in a much more realistic way than using the traditional linear KD approach only.  相似文献   

2.
Infrared powder-absorption spectra of nine natural and five synthetic olivine samples across the forsterite–fayalite join have been investigated at room temperature in the range 70–1400 cm–1. Variations of peak positions as a function of Fe content are close to linear for those vibrational bands whose trend could be followed across the solid solution. Line-broadening has been quantified by autocorrelation analysis. Positive deviations from linearity of the line-broadening parameter, corr, for groups of bands at low energies are consistent with the existence of local elastic strain heterogeneities at intermediate compositions in the solid solution. It also appears that the structure of forsterite is more homogeneous than Fe-rich olivines in relation to local elastic strain effects. Positive deviations from linearity of the line-broadening parameter for the low-energy regions scale linearly with calorimetric data for the enthalpy of mixing. This close correlation between line-broadening in IR spectra and calorimetric enthalpies of mixing has now been observed for four different binary solid solutions, and there is a further, qualitative correlation with bulk modulus.  相似文献   

3.
We present an analysis of spectrophotometric observations of the latest cycle of activity of the symbiotic binary Z And from 2006 to 2010. We estimate the temperature of the hot component of Z And to be ≈150 000−170 000 K at minimum brightness, decreasing to ≈90 000 K at the brightness maximum. Our estimate of the electron density in the gaseous nebula is N e = 1010−1012 cm−3 in the region of formation of lines of neutral helium and N e = 106−107 cm−3 in the region of formation of the [OIII] and [NeIII] nebular lines. A trend for the gas density derived from helium lines to increase and the gas density derived from [OIII] and [NeIII] lines to simultaneously decrease with increasing brightness of the system was observed. Our estimates show that the ratios of the theoretical and observed fluxes in the [OIII] and [NeIII] lines agree best when the O/Ne ratio is similar to its value for planetary nebulae. The model spectral energy distribution showed that, in addition to a cool component and gaseous nebula, a relatively cool pseudophotosphere (5250–11 500 K) is present in the system. The simultaneous presence of a relatively cool pseudophotosphere and high-ionization spectral lines is probably related to a disk-like structure of the pseudophotosphere. The pseudophotosphere formed very rapidly—over several weeks—during a period of increasing brightness of Z And. We infer that in 2009, as in 2006, the activity of the system was accompanied by a collimated bipolar ejection of matter (jets). In contrast to the situation in 2006, the jets were detected even before the system reached its maximum brightness. Moreover, components with velocities close to 1200 km/s disappeared at the maximum, while those with velocities close to 1800 km/s appeared.  相似文献   

4.
The launch of the Spektrum-Roentgen-Gamma (SRG) international orbiting astrophysical observatory is planned for the near future. It is planned tomaneuver SRGinto the vicinity of the L2 libration point of the Sun–Earth system, where it will be kept in a quasi-stable orbit. The spacecraft orbit must be maintained in order to carry out the scientific program of the project, which requires obtaining information about the current parameters of its motion. With the aim of developing methods for making optical measurements and estimating the required volume of measurement data and their accuracy, observations of the Gaia spacecraft, which is located in the vicinity of L2, were made at the Sayan Observatory in 2014–2015. The results of observations of the Gaia spacecraft on the 1.6-m infrared telescope of the Sayan Observatory are presented. The measured brightness of the spacecraft was 20.7–22m, which is close to the limiting magnitude of the telescope. The accuracy of these astrometric measurements was about one arcsecond. Possibilities for obtaining accurate astrometric data for the SRG spacecraft in orbit in the vicinity of L2 are discussed, as well as the required observing conditions and the volume of measurement data required for adequate prediction of the spacecraft motion.  相似文献   

5.
The Olyutorsky–Kamchatka foldbelt formed as a result of two successive collisions of the Achaivayam–Valaginsky and Kronotsky–Commander island arcs with the Eurasian margin where the two terranes docked after a long NW transport. We model their motion history from the Middle Campanian to Present and illustrate the respective plate margin evolution with ten reconstructions. In this modeling the arcs are assumed to travel on the periphery of the large plates of Eurasia, North America, Pacific, and Kula, for which the velocities and directions of motion are known from published data. The model predicts that the Achaivayam–Valaginsky arc was the leading edge of the Kula plate from the Middle Campanian to the Middle Paleocene and then moved slowly with the Pacific plate as long as the Middle Eocene when it accreted to Eurasia. The Kronotsky arc initiated in the Middle Campanian on the margin of North America and was its part till the latest Paleocene when the terrane changed polarity to move northwestward with the Pacific plate and eventually to collide with Eurasia in the Late Miocene. The predicted paleolatitudes of the Achaivayam–Valaginsky and Kronotsky–Commander island arcs for the latest Cretaceous and Paleogene are consistent with nine (out of eleven) reliable paleomagnetic determinations for samples from the two arcs. Additional changes imposed on the initial model parameters (kinematics of the large plates, relative position of the Kula–Pacific Ridge and the Emperor seamount chain, or time of active volcanism within the arcs) worsen the fit of the final reconstructions to available geological and paleomagnetic data. Therefore, the suggested model appears to be the most consistent one at this stage of knowledge.  相似文献   

6.
Doklady Earth Sciences - Based on atomistic modeling data, various schemes of the isomorphic incorporation of K+ and Na+ ions into the crystal structures of CaSiO3 and MgSiO3 in the pressure range...  相似文献   

7.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

8.
The three-dimensional local organisation around Fe atoms in a natural diaspore (Al0.9955Fe0.0045OOH) has been investigated by angular measurements of X-ray absorption spectra. It is demonstrated that in a single crystal of diaspore, the absorption cross-section exhibits the special case of trichroism where three independent measurements are needed to determine the absorption cross-section for any direction of polarization. Extended X-ray absorption fine structure (EXAFS) spectra were thus recorded at the following orientations of the polarization vector: , , and . The incoming white beam was monochromatized using two Si(331) crystals, which deliver at the Fe K-edge a completely linearly polarized X-ray beam. The reliability of our measurements was checked by comparing the isotropic EXAFS spectrum calculated from the three orthogonal measurements to the one of the diaspore powder recorded at the magic angle. It is shown that Fe3+ ions are not randomly distributed within the diaspore framework. Furthermore, only part of the Fe3+ ions substitutes Al, the others being located in the channels of the structure. The 3D local structure of the Fe domains has been modeled assuming hematite-like clusters of three Fe octahedra topotactically grafted to aluminous chains. These Fe clusters are thought to represent ancient multinuclear Fe surface complexes having formed at the time of the diaspore growth, and being sealed in its bulk structure. The whole crystal of diaspore is then thought to have kept the memory of the heterogeneous nucleation mechanism of these hematite nuclei. In addition to the well-known examples of atom segregations, ion vacancies, and intergrowths of discrete phases, this new type of crystal defect represents another evidence of non-equilibrium crystallization process under the thermodynamic and kinetic conditions that prevail at the earth's surface.  相似文献   

9.
10.
Reliable thermodynamic models assessing the interaction of radionuclides with cementitious materials are important in connection with long-term predictions of the safe disposal of radioactive waste in cement-based repositories. In this study, a geochemical model of U(VI) interaction with calcium silicate hydrates (C–S–H phases), the main component of hardened cement paste (HCP), has been developed. Uranium(VI) sorption isotherms on C–S–H phases of different Ca:Si ratios (C:S) and structural data from spectroscopic studies provided the indispensable set of experimental data required for the model development. This information suggested that U(VI) is neither adsorbed nor incorporated in the Ca–O octahedral layers of the C–S–H structure, but rather is located in the interlayer, similar to Ca2+ and other cations. With a view to the high recrystallisation rates and the cryptocrystalline ‘gel-like’ structure of the C–S–H phases, these observations indicated a U(VI) uptake driven by the formation of a solid solution.  相似文献   

11.
Very limited investigations have been done on the numerical simulation of carbon dioxide (CO2) migration in sandstone aquifers taking consideration of the interactions between fluid flow and rock stress. Based on the poroelasticity theory and multiphase flow theory, this study establishes a mathematical model to describe CO2 migration, coupling the flow and stress fields. Both finite difference method (FDM) and finite element method (FEM) were used to discretize the mathematical model and generate a numerical model. A case study was carried out using the numerical model on the Jiangling sandstone aquifer in the Jianghan basin, China. The rock mechanics parameters of reservoir and overlying strata of Jiangling depression were obtained by triaxial tests. A two-dimensional model was then built to simulate carbon dioxide migration in the sandstone aquifer. The numerical simulation analyzes the carbon dioxide migration distribution rule with and without considering capillary pressure. Time-dependent migration of CO2 in the sandstone aquifer was analyzed, and the result from the coupled model was compared with that from a traditional non-coupled model. The calculation result indicates a good consistency between the coupled model and the non-coupled model. At the injection point, the CO2 saturation given by the coupled model is 15.39 % higher than that given by the non-coupled model; while the pore pressure given by the coupled model is 4.8 % lower than that given by the non-coupled model. Therefore, it is necessary to consider the coupling of flow and stress fields while simulating CO2 migration for CO2 disposal in sandstone aquifers. The result from the coupled model was also sensitized to several parameters including reservoir permeability, porosity, and CO2 injection rate. Sensitivity analyses show that CO2 saturation is increased non-linearly with CO2 injection rate and decreased non-linearly with reservoir porosity. Pore pressure is decreased non-linearly with reservoir porosity and permeability, and increased non-linearly with CO2 injection rate. When the capillary pressure was considered, the computed gas saturation of carbon dioxide was increased by 10.75 % and the pore pressure was reduced by 0.615 %.  相似文献   

12.
Marchenko  E. I.  Bobrov  A. V.  Eremin  N. N. 《Doklady Earth Sciences》2019,488(2):1203-1206
Doklady Earth Sciences - Based on the data of atomic modeling, the different schemes of isomorphic incorporation of Cr3+ ions into the crystal structures of CaSiO3 and MgSiO3 were tested in the...  相似文献   

13.
High-temperature X-ray diffraction experiments have been performed on melilite solid solutions, on single crystal and powder samples. In åkermanite–gehlenite series, the volumetric thermal expansion increases from gehlenite, 26.5(2) E-06 K-1, to åkermanite, 31.2(1) E-06 K-1. The variation is related to the cation content in the tetrahedral T1 site of the structure, and the linear expansion along the a axis has the greatest variation as a function of composition. The expansion perpendicular to the tetrahedral layers does not present any significant variation as a function of composition. In the åkermanite–Na melilite series, the presence of Na in the [8]-coordinated site strongly increases the linear expansion along the c axis, while the volumetric expansion decreases from åkermanite to Na melilite, whose value can be extrapolated to 27.4 E-06 K-1  相似文献   

14.
15.
Local structural heterogeneities in crystals of the binary grossular–spessartine solid solution have been analyzed using powder IR absorption spectroscopy. Wavenumber shifts of the highest energy Si–O stretching mode in spectra collected at room temperature are consistent with variations in Si–O bond length from structural data. They show a smaller positive deviation from linearity across the join than is seen for the grossular–pyrope and grossular–almandine binaries. The effective line widths, corr, of three selected wavenumber regions all deviate positively from linear behaviour. An empirical calibration of this excess spectroscopic property, obtained by comparison with calorimetric enthalpy of mixing data, gives an estimate for the symmetric Margules parameter of WHspec = 14.4(7) kJ mol–1 in Hmix = WHspecXGrXSp. WHspec values derived on the same basis for four aluminosilicate garnet solid solutions analyzed by IR spectroscopy vary with V2, where V represents the difference in molar volume between the end members of each binary system. Measurements of lattice parameters and IR spectra were made over a range of temperatures for seven samples with different compositions. Positive excess molar volumes of mixing at low temperature (30 K) may be larger than the excess molar volumes at room temperature. The saturation temperatures of the molar volumes show no correlation with composition, however, in contrast with what had been expected on the basis of data for the grossular–pyrope binary. Saturation temperatures for spectroscopic parameters and lattice parameters of samples with compositions Gr15Sp85 and Gr60Sp40 seem to be outliers in all experiments. It is concluded that the data hint at systematic changes in saturation temperatures across the solid solution, with implications for both the excess entropy of mixing and the excess volume of mixing, but more precise data or further sample characterization are needed to prove that this composition dependence is real in garnet solid solutions.  相似文献   

16.
17.
The FeS2–Ag–Pt–As system was studied using hydrothermal thermogradient synthesis (with internal sampling) of pyrite crystals at a temperature of 500°C and pressure of 1 kbar in ammonium chloridebased solutions. The modes of occurrence of precious metals (PM) were determined using atomic absorption spectrometry (AAS) in its version of statistical selections of analytical data on single crystals (SSADSC), electron microprobe analysis (EMPA), scanning electron microscopy with energy-dispersive spectrometry (SEM-EDS), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The concentration of Pt in its structural mode in pyrite is as high as 10–11 ppm and is practically not correlated with the As concentration. The dualistic distribution coefficient of Pt between pyrite and hydrothermal solution is 21 ± 7 for the structural mode and 210 ± 80 for the surface-related mode of this element. No inclusions of either any Pt-bearing minerals or Pt itself was detected. Platinum is an element highly compatible with hydrothermal pyrite and is different in this sense from gold, and pyrite is underestimated as a potential concentrator of platinumgroup elements (PGE). The distribution of Ag in pyrite is highly heterogeneous. The likely reason for this is that the Ag solid solution cannot be quenched, and hence, the Ag concentrations broadly vary and are very unsystematically distributed in natural pyrite crystals. Assuming this hypothesis, the limit for Ag accommodation in FeS2 can be estimated using SSADSC at 0.09 ± 0.06 wt % under the experimental parameters, and the distribution coefficient of the structural Ag mode is thereby evaluated at 1400 ± 700. When crystallizing together with FeS2 proustite (Ag3AsS3) near its melting point, forms mixtures with dervillite (Ag2AsS2), in which Ag deficit is counterbalanced by excess divalent As. The limit of As incorporation into pyrite under these conditions is ≤0.1 wt %. SEM-EDS and XPS data indicate that the surface phases are of three types. In the course of crystal growth, practically two-dimensional nonautonomous phases (NP) are aggregated into submicroscopic and micrometer-sized crystalline bodies (mesocrystals) that largely inherit their unusual minor-element composition from NP and are enriched in Ag, Pt, As, and other minor elements. NP and mesocrystals are enriched in Al, which was transferred into them from the Al-bearing Ti alloy of the reaction containers. Silver occur in the volume of the crystals and on their surface as monovalent silver sulfide. Arsenic was detected mostly in the form of di- and trivalent arsenic sulfides. Pentavalent arsenic oxide was identified only on the surface of the crystals and can be easily eliminated by ion milling.  相似文献   

18.
The early stage of Sichuan Basin formation was controlled by the convergence of three major Chinese continental blocks during the Indosinian orogeny that include South China,North China,and Qiangtang blocks.Although the Late Triassic Xujiahe Formation is assumed to represent the commencement of continental deposition in the Sichuan Basin,little research is available on the details of this particular stratum.Sequence stratigraphic analysis reveals that the Xujiahe Formation comprises four third-order depositional sequences.Moreover,two tectono-sedimentary evolution stages,deposition and denudation,have been identified.Typical wedge-shaped geometry revealed in a cross section of the southern Sichuan Basin normal to the Longmen Shan fold-thrust belt is displayed for the entire Xujiahe Formation.The depositional extent did not cover the Luzhou paleohigh during the LST1 to LST2 (LST,TST and HST mean Iowstand,transgressive and highstand systems tracts,1,2,3 and 4 represent depositional sequence 1,2,3 and 4),deltaic and fluvial systems fed sediments from the Longmen Shan belt,Luzhou paleohigh,Hannan dome,and Daba Shan paleohigh into a foreland basin with a centrally located lake.The forebulge of the western Sichuan foreland basin was located southeast of the Luzhou paleohigh after LST2.According to the principle of nonmarine sequence stratigraphy and the lithology of the Xujiahe Formation,four thrusting events in the Longmen Shan fold-thrust belt were distinguished,corresponding to the basal boundaries of sequences 1,2,3,and 4.The northern Sichuan Basin was tilted after the deposition of sequence 3,inducing intensive erosion of sequences 3 and 4,and formation of wedge-shaped deposition geometry in sequence 4 from south to north.The tilting probably resulted from small-scale subduction and exhumation of the western South China block during the South and North China block collision.  相似文献   

19.
Doklady Earth Sciences - The content of polycyclic aromatic hydrocarbons (PAHs) in soil and snow cover near the carbon black plants in Moscow, Omsk, and Samara regions was studied. The differences...  相似文献   

20.
Lithology and Mineral Resources - Unique material pertaining to the hydrodynamics of petroliferous rocks in the Yamal–Kara Depression has been summarized for the first time in the last 30...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号