首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historical and exact information about the land use/land cover change is very important for regional sustainable development. The aim of this paper is to determine the rapid changes in land use/land cover (LULC) pattern due to agriculture expansion, environmental calamities such as flood and government policies over Upper Narmada basin, India. Multi-temporal Landsat satellite images for years 1990, 2000, 2010 and 2015 were used to analyze and monitor the changes in LULC with an overall accuracy of more than 85%. Results revealed a potential decrease in natural vegetation (? 9.52%) due to the expansion of settlement (+ 0.52%) and cropland (+ 9.43%) from 1990 to 2015. In the present study, Cellular Automata and Markov (CA–Markov), an integrated tool was used to project the short-term LULC map of year 2030. The projected LULC (2030) indicated the expansion of built-up area along with the cropland and degradation in the vegetation area. The outcomes from the study can help as a guiding tool for protection of natural vegetation and the management of the built-up area. Additionally, it will help in devising the strategies to utilize every bit of land in the study area for decision makers.  相似文献   

2.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

3.
Information on use/land cover change is important for planners and decision makers to implement sustainable use and management of resources. This study was intended to assess the land use land cover (LULC) change in the Koga watershed. The MSS of 1973, TM images of 1986, 1995 and 2011 were used together with survey and demographic data to detect the drivers of land cover changes. The result revealed that a remarkable LULC change occurred in the study area for the past thirty eight years. The area of cultivated and settlement has increased by 7054.6 ha, while, grass and bush lands decreased by 4846.5 and 3376 ha respectively. Wetland also declined from 580.2 ha to 68.3 ha. The growing demand for cultivable land and fuel wood were the major causes to the deterioration of grass and bush lands. Hence, the appropriate land use policy should be employed to sustain available resource in the watershed.  相似文献   

4.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   

5.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   

6.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

7.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

8.
Wular Lake, one of the largest freshwater lakes of Jhelum River Basin, is showing signs of deterioration due to the anthropogenic impact and changes in the land use/land cover (LULC) and hydrometeorological climate of the region. The present study investigated the impacts of temporal changes in LULC and meteorological and hydrological parameters to evaluate the current status of Wular Lake environs using multisensor, multitemporal satellite and observatory data. Satellite images acquired for the years 1992, 2001, 2005, and 2008 were used for determining changes in the LULC in a buffer area of 5 km2 around the Wular Lake. LULC mapping and change analysis using the visual interpretation technique indicated significant changes around the Wular Lake during the last two decades. Reduction in lake area from 24 km2 in 1992 to 9 km2 in 2008 (?62.5 %) affected marshy lands, the habitat of migratory birds, which also exhibited drastic reduction from 85 km2 in 1992 to 5 km2 in 2008 (?94.117 %). Marked development of settlements (642.85 %) in the peripheral area of the Wular Lake adversely affected its varied aquatic flora and fauna. Change in climatic conditions, to a certain extent, is also responsible for the decrease in water level and water spread of the lake as witnessed by decreased discharge in major tributaries (Erin and Madhumati) draining into the Wular Lake.  相似文献   

9.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

10.
The Huajiang and Hongfenghu demonstration areas represent typical karst landforms and rocky desertification landscapes in Guizhou, China. These were selected for a comparison of rocky desertification and land use cover. Based mainly on 5 m resolution Spot 5, remote sensing images, topographic maps (1:10,000) and land use maps, the intensity and extent of rocky desertification, and slope characteristics of the two areas were interpreted. Spatial overlay analysis was used to compare the land use/land cover (LULC) and rocky desertification within each. The results were compared using the concepts of rocky desertification occurrence (RDO) among LULC classes and the structure value of desertification land (SVDL). The results demonstrated that (1) the landforms and extent of rocky desertification in the two areas are significantly different and the proportion of very steep slopes is one of the reasons leading to large areas of rocky desertification; (2) the RDO and SVDL show significant differences between the two areas; also rocky desertification intensity in various LULC classes cannot be measured in terms of RDO. High RDO may occur in low-intensity desertification land, and vice versa; (3) the structural characteristics of rocky desertification among various LULC are consistent among the woodland, “bare land” and “other grassland” land use classes in the two areas, but sequence slight > moderate > intense is not consistent between the areas. For the rocky desertification control, the present authors consider that the spatial distribution differences of rocky desertification and LULC among areas with different landform types area combined with the intensity of rocky desertification should be used in designing appropriate measures for control of desertification and rehabilitation of land.  相似文献   

11.
This study has been carried out in the granitic aquifer of Maheshwaram watershed, Telengana, India. In this study, groundwater sample data of 8 years were analyzed for the fluoride content with other chemical quality parameters. The correlation and factor analysis were employed to understand the mechanisms for fluoride (F) enrichment as well as the hydrochemistry of the area. These analyses addressed that the observed groundwater quality was due to water-rock interaction in the aquifer and fluoride is coming from the dissolution of fluorite and other silicate minerals like biotite and hornblende by the groundwater. Land use/land cover (LULC) study from 2002 to 2008 revealed there were significant positive changes in build-up land and negative changes in vegetation cover after 2003. The main agriculture (paddy) has been reduced to 0.97 km2 in 2008 from 2.39 km2 in 2003. The studied watershed has been characterized on the basis of F concentration into safe, transition, and unsafe groups following the WHO and BIS guidelines. The temporal variation of the three groups showed that 57.6% area of the watershed was in unsafe zone in 2000–2003, but 69.2% of the area became safe in 2006–2009. It has been found that F concentration reduced in 12.59% of the area (became safe from unsafe) accompanied by the reduction of paddy field area. After validation with present (2016) fluoride concentrations, it was found that 16.28% are vulnerable in near future. The results of this study showed that (a) the safe and unsafe zones of fluoride concentrations vary with time with the changes in other parameters associated with it like crop pattern and (b) vulnerable zone can be identified based on the susceptibility to change of safe and unsafe zones. Such studies are useful for planning and management purposes.  相似文献   

12.
Estimating the potential direct runoff for urban watersheds is essential for flood risk mitigation and rainwater harvesting. Thus, this study aims to estimate the potential runoff depth based on the natural resources conservation service (NRCS) method and delineation of the watersheds in Riyadh, Saudi Arabia. To accomplish this objective, the geographic information systems (GIS) and remote sensing technique (RST) data were integrated to save time and improve analysis accuracy. The employed data include the digital elevation model (DEM), soil map, geology map, satellite images, and daily precipitation records. Accordingly, the hydrologic soil groups (HSG), the land use/land cover (LULC), and curve number (CN) were determined for each watershed in the study area. The results of this analysis show that the study area can be delineated into 40 watersheds with a total area of 8500 km2. Furthermore, the dominant HSG is group D, which represents about 71% of the total area. The LULC maps indicate four major land types in the entire study area: urban, barren land, agricultural land, and roads. The CN of the study area ranges from 64 to 98, while the weighted CN is 92 for the city. The rainfall-runoff analysis shows that the area has a high and very high daily runoff (35–50 and >?50 mm, respectively). Therefore, in this case, the runoff leads to flooding, especially in the urban area and agricultural lands.  相似文献   

13.
In Jakarta, climate change has been detected through rising air temperatures, increased intensity of rainfall in the wet season, and sea level rise. The coupling of such changes with local anthropogenic driven modifications in the environmental setting could contribute to an increased probability of flooding, due to increase in both extreme river discharge and sedimentation (as a result of erosion in the watersheds above Jakarta and as indicated by sediment yield in the downstream area). In order to respond to the observed and projected changes in river discharge and sediment yield, and their secondary impacts, adaptation strategies are required. A possible adaptation strategy is through policy making in the field of spatial planning. For example, in Indonesia, presidential regulation number 54 year 2008 (Peraturan Presiden Nomor 54 Tahun 2008—Perpres 54/2008) was issued as a reference for the implementation of water and soil conservation. This paper assesses the impact of climate and land cover change on river discharge and sediment yield, as well as the effects of Perpres 54/2008 on that river discharge and sediment yield. The spatial water balance model Spatial Tools for River Basins and Environmental and Analysis of Management Option was used for the runoff computations, whilst the Spatial Decision Assistance of Watershed Sedimentation model was used to simulate erosion, Sediment Delivery Ratio, and sediment yield. The computation period is from January 1901 to December 2005, at the scale of the following watersheds: Ciujung, Cisadane, Ciliwung, and Citarum. During the twentieth century, computed average discharge in the downstream area (near Jakarta) increased between 2.5 and 35 m3/s/month, and sediment yield increased between 1 × 103 and 42 × 103 tons/year. These changes were caused by changes in both land cover and climate, with the former playing a stronger role. Based on a computation under a theoretical full implementation of the spatial plan proposed by Perpres 54/2008, river discharge would decrease by up to 5 % in the Ciliwung watershed and 26 % in the Cisadane watershed. The implementation of Perpres 54/2008 could also decrease the sediment yield, by up to 61 and 22 % in the Ciliwung and Cisadane watersheds, respectively. These findings show that the implementation of the spatial plan of Perpres 54/2008 could significantly improve watershed response to runoff and erosion. This study may serve as a tool for assessing the reduction in climate change impacts and evaluating the role of spatial planning for adaptation strategies.  相似文献   

14.
Land use and land cover (LULC) changes caused by human activities have strong influences on regional environment. Land surface temperate plays an important role in studying the impact of LULC changes on regional environment. In this paper, remotely sensed thermal infrared data were used to assess land surface temperature (LST) in the Weigan and Kuqa river oasis, Xingjiang, one of the important agricultural areas in the northwestern China. The present study deals with the extraction of LST and the relationship between LULC changes using Landsat 5 TM acquired on September 25, 1989, and September 6, 2011. The results indicate that the surface temperature of water body, bare land, and desert changed significantly between 1989 and 2011. In general, the LST was lower in 1989 than in 2011. There were no lower, higher, and highest temperature zones in 1989. However, the minimum temperature was 10.7 °C in 1989 and 15.8 °C in 2011. The maximum temperature was 29.3 °C in 1989 and 41.8 °C in 2011. Regarding the LULC types, the desert features in the Gobi Desert warmed more quickly than the oasis. So, the temperature of the oasis was lower than the surrounded areas, resulting in a so-called “cold island” phenomenon. Oasis cold island effect index (OCIEI) shows that stability of oasis had rising trend from 1989 to 2011. In addition, the impact of LULC changes on LST was analyzed and the driving forces were also analyzed from 1977 to 2011. This study is significant for further understanding of the energy exchange status of soil-plant-atmospheric system and the regional heat distribution in arid and semi-arid areas of the northwest China.  相似文献   

15.
Flooding is a major environmental hazard in Poland with risks that are likely to increase in the future. Land use and land cover (LULC) have a strong influencing on flood risk. In the Polish Carpathians, the two main projected land use change processes are forest expansion and urbanization. These processes have a contradictory impact on flood risk, which makes the future impact of LULC changes on flooding in the Carpathians hard to estimate. In this paper, we investigate the impact of the projected LULC changes on future flood risk in the Polish Carpathians for the test area of Ropa river basin. We used three models of spatially explicit future LULC scenarios for the year 2060. We conduct hydrological simulations for the current state and for the three projected land use scenarios (trend extrapolation, ‘liberalization’ and ‘self-sufficiency’). In addition, we calculated the amount of flood-related monetary losses, based on the current flood plain area and both actual and projected land use maps under each of the three scenarios. The results show that in the Ropa river, depending on scenario, either peak discharge decreases due to the forest expansion or the peak discharge remains constant—the impact of LULC changes on the hydrology of such mountainous basins is relatively low. However, the peak discharges are very diverse across sub-catchments within the modeling area. Despite the overall decrease of peak discharge, there are areas of flow increase and there is a substantial projected increase in flood-related monetary losses within the already flood-prone areas, related to the projected degree of urbanization.  相似文献   

16.
To facilitate urban planning and management in fast-growing metropolitan areas, it is highly necessary to detect the spatiotemporal changes of different land cover types. This study aimed at identifying Beijing’s land cover types and detecting the characteristics of their spatiotemporal changes using time series remote sensing and GIS techniques from 1978 to 2010. A total of 16 Landsat MSS/TM/ETM+ images were collected during the spring and late summer seasons. After preprocessing the dataset, artificial neural network was used to perform the land cover classification. Consequently, four maps were generated for 1978, 1992, 2000, and 2010, with six classes (agriculture, woodland, grassland, water, urban, and barren land) according to the level I classification scheme. Three transition matrices were constructed to represent all possible changes that occur in the landscape. The results showed that agriculture, barren land, and grassland had an increase in area, while urban, water, and woodland had a reduction within the study area. A total of 2,032.341 km2 agriculture was reduced and 2,359.146 km2 woodland was increased. In the three periods for 1978–1992, 1992–2000, 2000–2010, agriculture had the largest amount of transfer out primarily to urban class around central urban areas and woodland had the most transfer in mainly from barren land in mountainous areas. More importantly, the driving forces analysis including economic development, growth of population and construction areas, and institutional policies was conducted to find out the primary factors inducing the land cover change.  相似文献   

17.
Land use/land cover change is a global phenomenon which reflects natural resources degradation and/or utilization. Remote sensing and GIS have been widely used to monitor such changes at watershed level. The present study evaluates the LU/LC change during 1989 - 2001 in a semi-arid watershed of central India. Geocoded satellite data of 1989 and 2001 on 1:50,000 scale, were visually interpreted to prepare thematic maps which were later digitized using ArcGIS softwares. The analysis shows that vast tracts of cultivated land have become uncultivated and at some places even converted to wasteland. However, the land under dense forest and open forest has decreased due to expansion of built-up land and other anthropogenic activities. Increase in area of uncultivated land, wasteland and decrease in cultivated land and open scrub is also supported by rainfall analysis, which shows a declining trend and a fall of 186.93 mm in average annual rainfall for 1986-2003 period. The change detection map prepared using land use/land cover of 1989 and 2001 as inputs shows that out of the total geographical area of the watershed, 25.78% of the watershed area has seen a change from one land use category to another, however rest 74.22% has remained unchanged.  相似文献   

18.
Human‐induced land use/land cover (LULC) changes are among the most important processes that shape the dynamics of the earth’s surface. This phenomenon, which is occurring at an astonishing rate, and its consequential environmental impacts have become an important area of research for scientists.Therefore, a wide range of methods and models have been developed to detect and predict these alterations, among which cellular automata (CA) models such as the CA‐Markov model, due to their affinity to geographic information system (GIS) and remote sensing (RS), are appropriate for detailed resolution modelling and simulating dynamic spatial processes. In Iran, the district of Ravansar has undergone severe LULC changes recently, thus to take the necessary precautions, decision‐makers need to predict and determine the extent of these changes. In this study, using spatial analysis methods the LULC changes in Ravansar were investigated from 1992 to 2015. Subsequently, the CA‐Markov model was applied to simulate the spatial pattern changes of LULC until 2030. Our results indicated that from 1992 to 2015, this region has witnessed a noticeable increase in the areas of the built‐up and agricultural lands (both aquatic and non‐aquatic), resulting in the decrease of the gardens, range, and bare lands. The simulated LULC map showed that this trend will continue due to more urbanization and development of agricultural areas.  相似文献   

19.
This work evaluates the changes of nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total phosphorus (P) and chemical oxygen demand (COD) concentrations in stream waters as related to the land use/land cover (LULC) alterations within eight small (5–39 km2) tile-drained catchments in the southern part of The Czech Republic in the period 1993–2010, when massive grassing of arable land took place. The robust tools of seasonal Mann–Kendall trend test and LOcally WEighted Scatterplot Smoothing methods were employed to reveal trends of the monitored parameters with adjustment to hydrology. Using principal component analysis and multiple regressions, statistically significant factors with highest impacts on the assessed water quality parameters were identified. Besides indicators of LULC changes in the catchments and their various zones, information of built tile drainage systems were used along with factors reflecting point pollution sources such as the population number, sewerage type and proximity to a watercourse, effectiveness of wastewater treatment, and number of livestock units. The change in LULC was essential only for NO3-N concentrations, when grassing of arable land, presence of water ponds, areas of permanent cultures and also areas of drained land explained up to 90.6 % NO3-N variability and nitrate-nitrogen concentrations showed a significantly decreasing trend in all monitored catchments during the evaluated period. LULC changes within infiltration vulnerable zones were discovered as less important for the assessed water quality parameters compared to LULC changes in the whole catchment area. However, for NH4-N, P and COD, the results did not enable a definite quantification of the effects of LULC changes. The influence of non-point pollution sources on these parameters was revealed as uncertain and was heavily overshadowed by point sources, in particular by wastewater management, and livestock numbers, although the proportion of arable land in tile drainage subcatchments was discovered fundamental in case of the COD. The increasing numbers of livestock, population, and changes in sewage treatment led in some catchments to significant worsening of water quality. Achieved findings may be critical for supporting water quality policy and management decisions.  相似文献   

20.
The devastating effect of soil erosion is one of the major sources of land degradation that affects human lives in many ways which occur mainly due to deforestation, poor agricultural practices, overgrazing,wildfire and urbanization. Soil erosion often leads to soil truncation, loss of fertility, slope instability, etc.which causes irreversible effects on the poorly renewable soil resource. In view of this, a study was conducted in Kelantan River basin to predict soil loss as influenced by long-term land use/land-cover(LULC) changes in the area. The study was conducted with the aim of predicting and assessing soil erosion as it is influenced by long-term LULC changes. The 13,100 km~2 watershed was delineated into four sub-catchments Galas, Pergau, Lebir and Nenggiri for precise result estimation and ease of execution. GIS-based Universal Soil Loss Equation(USLE) model was used to predict soil loss in this study. The model inputs used for the temporal and spatial calculation of soil erosion include rainfall erosivity factor,topographic factor, land cover and management factor as well as erodibility factor. The results showed that 67.54% of soil loss is located under low erosion potential(reversible soil loss) or 0-1 t ha~(-1) yr~(-1) soil loss in Galas, 59.17% in Pergau, 53.32% in Lebir and 56.76% in Nenggiri all under the 2013 LULC condition.Results from the correlation of soil erosion rates with LULC changes indicated that cleared land in all the four catchments and under all LULC conditions(1984-2013) appears to be the dominant with the highest erosion losses. Similarly, grassland and forest were also observed to regulate erosion rates in the area. This is because the vegetation cover provided by these LULC types protects the soil from direct impact of rain drops which invariably reduce soil loss to the barest minimum. Overall, it was concluded that the results have shown the significance of LULC in the control of erosion. Maps generated from the study may be useful to planners and land use managers to take appropriate decisions for soil conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号