首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jebel Khariz, the largest central vent volcano on the south Arabian coast, lies 60 miles (95 km) to the west of Aden and was probably active during the Upper Miocene. The volcanic edifice originally covered some 350 sq. miles (900 km2) and consists of an older, radially dipping main cone sequence of rhyolites, trachytes, basalts and olivine basalts and a younger, horizontal caldera sequence mainly of intermediate lavas, that infilled the caldera subsequent to its formation at a late stage in the history of the volcano. The Khariz volcanic suite, ranging in composition from olivine basalts to per-alkali rhyolites of comenditic affinity, was probably produced by fractionation, in a low pressure regime, of a mildly alkali olivine basalt magma. Noting the abundance of peralkali volcanics associated with the African rift system in Kenya, Ethiopia and on the margins of the Red Sea and the Gulf of Aden, it is tentatively suggested that, at times, the sub-crustal mechanism, responsible for the rift development, might also produce an environment where fusion of the earth’s mantle gave rise to a relatively rare, mildly alkali, ‘parental’ basaltic magma.  相似文献   

2.
In 1874 and 1875 the fissure swarm of Askja central volcano was activated during a major rifting episode. This rifting resulted in a fissure eruption of 0.3 km3 basaltic magma in Sveinagja graben, 50 to 70 km north of Askja and subsequent caldera collapse forming the Oskjuvatn caldera within the main Askja caldera. Five weeks after initial collapse, an explosive mixed magma eruption took place in Askja. On the basis of matching chemistry, synchronous activity and parallels with other rifted central volcanoes, the events in Askja and its lissure swarm are attributed to rise of basaltic magma into a high-level reservoir in the central volcano, subsequent rifting of the reservoir and lateral flow magma within the fissure swarm to emerge in the Sveinagja eruption. This lateral draining of the Askja reservoir is the most plausible cause for caldera collpse. The Sveinagja basalt belong to the group of evolved tholejites characteristie of several Icelandic central volcanoes and associated fissure swarms. Such tholeiites, with Mgvalues in the 40 to 50 tange, represent magmas which have suffered extensive fractional crystallization within the crust. The 12% porphyritic Sveinagja basalt contains phenocrysts of olivine (Fo62–67), plagioclase (An57–62), clinopyroxene (Wo38En46Wo16) and titanomagnetite. Extrusion temperature of the lava, calculated on the basis of olivine and plagioclase geothermometry, is found to be close to 1150°C.  相似文献   

3.
A large caldera cluster consisting of at least four calderas (Omine, Odai, Kumano-North and Kumano calderas) existed in the central–southern part of the Kii Peninsula approximately 14–15 Ma. On the other hand, thick Middle Miocene ash-flow tuffs, referred to as the Muro Ash-flow Tuff and the Sekibutsu Tuff Member, are distributed in the northern part of the Kii Peninsula. Although these tuffs are considered to have erupted from the caldera cluster in the central-southern Kii Peninsula, identifying the source caldera in the cluster has been controversial because of similarities in the petrological characteristics and identical radiometric ages of the volcaniclastic rocks of these calderas. We successfully discriminated the characteristics of the eruptive products of each caldera in the caldera cluster based on the apatite trace-element compositions of the pyroclastic dikes and ash-flow tuffs of the calderas. We also demonstrated that the source caldera of at least the lower main part of the Muro Ash-flow Tuff and the Sekibutsu Tuff Member was the Odai Caldera, which is located in the central Kii Peninsula. Our findings show possible correlations among the pyroclastic conduits and ash-flow tuffs of the caldera-fill and/or outflow deposits, even in cases where they have been densely welded and diagenetically altered. This method is useful for the study of deeply eroded ancient calderas.  相似文献   

4.
 Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3–5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to have erupted without caldera collapse, seem alternatively interpretable as more conventional calderas that were filled to overflow by younger lavas and tuffs. Some exposed subcaldera intrusions provide insights concerning subsidence processes, but such intrusions may continue to evolve in volume, roof geometry, depth, and composition after formation of associated calderas. Received: 13 February 1997 / Accepted: 9 August 1997  相似文献   

5.
Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ∼2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ∼400 km3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ∼1.3 km3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994–1995.A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994–1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb–Ta and enrichments of K–Rb–Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile.BI basalts and basaltic andesites have variable abundances of phenocrystic–microphenocrystic olivine plus Cr–Al–Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of relatively homogeneous anorthitic plagioclase (to An95.7). These have inclusions of Mg olivine (to Fo79) and thin (10–150 μm) normally zoned margins that reach to the more sodic compositions of the plagioclase phenocryst and microphenocryst rims. Anorthitic plagioclase crystals are common at many subduction-related volcanoes. At BI, the anorthitic plagioclase and associated olivine crystals are thought to have entered the magmas through disaggregation of troctolitic crystal mushes or plutonic xenoliths. This process affected bulk-rock compositions in many ways, including raising Al2O3 contents to values as high as 22.8 wt.% and Eu / Eu* values up to 1.05. Compared to a large petrological and geochemical database for Indonesian volcanic rocks, the BI suite falls at the most depleted end for levels of K and incompatible trace elements, and Sr, Nd, and Pb isotopic ratios. Consequently, the BI suite defines an excellent primitive baseline against which Indonesian volcanic suites can be compared.  相似文献   

6.
Detailed petrographic analysis of calcalkaline volcanic rocks of Shirouma-Oike volcano, Japan, reveals that the complex phenocryst assemblage (Ol+Cpx+Opx+Hb+Bt+Qz+Pl+Mt+Hm) in the younger group volcanic rocks can be divided into two groups, a high temperature group (Ol+Cpx±An-rich Pl) and a low temperature group (Op+Hb+Bt+Qz±Ab-rich Pl+Mt+Hm). Compositional zonation of the phenocrystic minerals, normal zoning in olivine and clinopyroxene, and reverse zoning in orthopyroxene and plagioclase, indicate that these two groups of phenocrysts precipitated from two different magmas which mixed before the eruption. The low temperature magma is a stagnant magma in a shallow magma chamber, to which high temperature basaltic magma is intermittently supplied. Magma mixing is also indicated in olivine-bearing two pyroxene andesite of the older group volcanic rocks, by the coexistence of normally zoned Mg-rich clinopyroxene phenocrysts and reversely zoned Fe-rich clinopyroxene phenocrysts, and by reverse zoning in orthopyroxene phenocrysts. It is concluded that magma mixing is an important process responsible for the generation of the disequilibrium features in calc-alkaline volcanic rocks.  相似文献   

7.
Three major phases are distinguished during the growth of Nyiragongo, an active volcano at the western limit of the Virunga Range, Zaire. Lavas erupted during phase 1 are strongly undersaturated melilitites characterized by the presence of kalsilite phenocrysts, perovskite, and the abundance of calcite in the matrix. Such lavas crop out mainly on the inner crater wall and progressively evolve toward more aphyric melilite nephelinites well represented on the flanks of the volcano. Adventive vents lying at the base of the cone developed along radial fracture systems and erupted olivine and/or clinopyroxene – rich melilitites or nephelinites. Stage 2 lavas are melilite-free nephelinites. Clinopyroxene is the main phenocryst and feldspathoids are abundant in the lavas exposed on the crater wall. These flows result from periodic overflowing of a magma column from an open crater. Extensive fissure flows which erupted from the base of the cone at the end of this stage are related to widespread draining out of magma which in turn induces the formation of the summit pit crater. Magmas erupted during stage 3 are relatively aphyric melilite nephelinites and the main volcanological characteristic is the permanent lava lake observed into the pit crater until the 1977 eruption. Fluctuations of the level of the lava lake was responsible for the development of the inner terraces. Periodic overflowing of the lava lake from the central pit formed the nepheline aggregate lava flows. Petrography and major element geochemistry allow the determination of the principal petrogenetic processes. Melilitites and nephelinites erupted from the summit crater are lavas derived, via clinopyroxene fractionation, from a more primitive melt. The abundance of feldspathoids in these lavas is in keeping with nepheline flotation. Aphyric melilite nephelinites covering the flanks and the extensive fissure flows have a homogeneous chemical composition; rocks from the historical lava lake are slightly more evolved. All these lavas differentiated in a shallow reservoir. Lavas erupted from the parasitic vents are mainly olivine and/or clinopyroxene-phyric rocks. Rushayite and picrites from Muja cone are peculiar high-magnesium lavas resulting from the addition of olivine xenocrysts to melilitic or nephelinitic melts. Fluid and melt inclusions in olivine and clinopyroxene phenocrysts indicate a crystallization depth of 10–14 km. A model involving two reservoirs located at different depths and periodically connected is proposed to explain the petrography of the lavas; this hypothesis is in accordance with geophysical data. Received: July 8, 1993/Accepted: September 10, 1993  相似文献   

8.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

9.
Petrological studies of 12 volcanic rock units in the northeast segment of the Taum Sauk Caldera, the major structural feature in the western part of the St. Francois Mountains, indicate that they were probably derived from the same magma chamber. These calc-alkalic rocks become progressively silica and alkali rich and calcium poor from the base to the top of the stratigraphic column. In the part of the northeast segment of the caldera studied in detail, the extrusives are over 5 thick and have a volume of over 500 km3. Rock units consisting of ash-flow tuffs, bedded airfall tuffs and lava flows were apparently deposited within a single episode of volcanic activity, since no signs of extensive erosion were observed among them. Although the rocks are completely devitrified, the preservation of pyroclastic and flow features is excellent. These volcanics are exposed representatives of a 1.3–1.4 b.y. old belt of volcanics and associated plutons which extends from southern Ohio to the Texas Panhandle any may represent a belt of continental accretion.  相似文献   

10.
Detailed total-intensity aeromagnetic surveys of the Kuttyaro and Aso caldera regions, eastern Hokkaido and central Kyushu, were made during early 1964 under the auspices of the U.S.-Japan Co-operative Science Program in conjunction with a project for geophysical studies of calderas in Japan. Each caldera has a maximum diameter of about 22 km; the flights cover a 60 × 60 km rectangular area in each region. The Kuttyaro survey also encompasses the older caldera Akan, south-west of Kuttyaro, and the younger caldera Mashu to the east. All three lie within the Chīshīma (Kurile) volcanic zone. The isomagnetic contour map shows this zone as a belt of short wave-length anomaies which trends east-northeast across the region. Broad wavelength anomalies with trends intersecting the Chīshīma belt at an acute angle probably reflect structural relief on the Neogene volcanic basement concealed beneath Kuttyaro pyroclastic flows. The centre of Kuttyaro caldera coincides with the sharp southern termination of a strong basement high, whereas caldera faults and post-caldera domes have little magnetic expression. Mashu caldera is marked by a minimum in the position of the caldera lake; a symmetrical positive anomaly centering southeast of the caldera suggests either a buried older volcanic edifice or an intrusion. Akan caldera is represented by a magnetic depression encompassing a positive anomaly produced by its central post-caldera cone. The depression extends north of the geologically-deduced boundary of the caldera and may include an earlier collapse structure. Several volcanoes and lava sequences in the region produce negative anomalies due to inverse polarization. The most significant feature of the Aso isomagnetic map is a large, elongate positive anomaly that occupies the southern half of the caldera and extends about one caldera diameter to the south-west along the trend of the Median Tectonic Line of south-west Japan. Whether the anomaly represents the pre-Tertiary basement complex or a younger intrusion perhaps associated with Aso eruptive activity is uncertain. However, the causative body is abruptly truncated within the caldera by a major east-south-east structure passing through the eastern rim and coincident with the approximate locus of resurgent central vent eruptions. The structure may be a fault system that provided egress for the Aso pyroclastic flows. Superimposed on the basement anomaly are the effects of the topography of the caldera, the superficial caldera structure, and the post-caldera cones. An area of intense solfataric activity in the Kuju group of young volcanoes north of Aso has a pronounced negative anomaly. These two surveys illustrate the utility of the magnetic method for investigations of basement structure in caldera regions. They have served as a guide in interpreting reconnaissance aeromagnetic profiles flown concurrently for this project across some 14 other calderas or caldera-like structures in the Japanese islands.  相似文献   

11.
Examination of weathering rinds from lava flows on Hawaii with backscatter electron microscopy and electron micro-probe analysis reveals that olivine weathers more slowly than adjacent clinopyroxene and plagioclase in environments with a paucity of organic acids. Yet when weathering rinds are in contact with abundant organic acids secreted by lichens, olivine weathers before clinopyroxene and plagioclase weathers last. The exception to Goldich's widely accepted mineral stability series in organic-poor environments runs counter to a thermodynamics explanation for the order of mineral weathering and illustrates the importance of the biogeochemical environment.  相似文献   

12.
A picrite lava (22 wt% MgO; 35 vol.% ol) along the western shore of the1.3–1.4 Ma Kahoolawe tholeiitic shield, Hawaii, contains small xenoliths of harzburgite, lherzolite, norite, and wehrlite. The various rock types have textures where either orthopyroxene, clinopyroxene, or plagioclase is in a poikilitic relationship with olivine. The Mg#s of the olivine, orthopyroxene, and clinopyroxene in this xenolith suite range between 86 and 82; spinel Mg#s range from 60 to 49, and plagioclase is An75–80. A 87Sr/86Sr ratio for one ol-norite xenolith is 0.70444. In comparison, the host picrite has olivine phenocrysts with an average Mg# of 86.2 (range 87.5–84.5), and a whole-rock 87Sr/86Sr ratio of 0.70426. Textural and isotopic information together with mineral compositions indicate that the xenoliths are related to Kahoolawe tholeiitic magmatism, but are not crystallization products of the magma represented by their host picrite. Rather, the xenoliths are crystalline products of earlier primitive liquids (FeO/MgO ranging 1 to 1.3) at 5–9 kbar in the cumulate environment of a magma reservoir or conduit system. The presence of ultramafic xenoliths in picrite but not in typical Kahoolawe tholeiitic lava (6–9 wt% MgO) is consistent with replenishment of reservoirs by dense Mg-rich magma emplaced beneath resident, less dense tholeiitic magma. Mg-rich magmas have proximity to reservoir cumulate zones and are therefore more likely than fractionated residual liquids to entrain fragments of cumulate rock.  相似文献   

13.
The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%–35% quartz, sanidine, plagioclase, ±biotite, ±hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5±0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K–Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows.The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was erupted imposes useful constraints for future evaluation of possible models for petrogenesis and the origin of trace-element characteristics of the system.  相似文献   

14.
The Garibaldi Complex is one of a chain of predominantly silicic volcanic cones along the centre of the Main Ethiopian Rift, which form part of the Pleistocene-Recent Aden Series (Mohr, 1962a). The present form of the Complex is largely a result of silicic conebuilding episodes, between which ignimbrites were erupted and areas collapsed to form calderas, and to a lesser extent of recent basalt eruptions. Comparisons are made with other areas of caldera collapse and attention drawn to the possible relationship between caldera complexes and plutonic ring structures.  相似文献   

15.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

16.
The authors have visited Suswa, a complex caldera-volcano situated thirty miles north-west of Nairobi, a feature surprisingly neglected by geologists. While they do not pretend to do more than present an introductory account of the general geology of this unique volcano, they are able to augment the brief references of earlier workers, Gregory, Spink and Richard. The principal rock types are described in general terms, and are found to include unusual rhomb-porphyry types of lava, vitrophyres of phonolitic composition (closely related to the kenytes, but devoid of modal nepheline). The earliest eruptions were of quite normal lava type, phonolites of Kenya type, erupted over a wide area in central Kenya in Plio-Pleistocene times (not later than 1.7 m.y. ago), and the rhomb-porphyries are restricted to a secondary eruptive sequence, of probable Pleistocene age. There was a minor reactivation in recent times, represented by restricted, bare, fresh flows, of type at present unknown. Chemical analyses of representative specimens of the two major suites are provided, and are supported by modal analyses of related specimens. Two summit calderas have been recognised, both apparently subsidence structures related to cauldron subsidence in depth. The earlier and larger caldera covers about 40 square miles, and is interpreted as ofGlencoe type with weakly developedKrakatoan characteristics. The inner caldera covers seven square miles, and is interpreted as aGlencoe type structure: it is not a simple caldera but contains an island — block of four square miles extent — a feature which may perhaps be reasonably compared with island features within the Lake Toba cauldron, Sumatra and Nyamlagira caldera, Congo. The terminal eruptions of the first volcano seem to have largely stemmed from a ring feeder, analogous with a body reported from Crater Lake caldera, Oregon, U.S.A. The outer caldera is now partly obscured by products of later eruption, from a secondary cone eccentric to the first caldera — Ol Doinyo Nyukie — and from minor parasitic vents. Ol Doinyio Nyukie volcano possessed an axial pit-crater, nearly a mile in diameter, now transected by the boundary fault of the inner caldera: this might reasonably be regarded as a third,Kilauean, summit caldera, since it was apparently drained by low-level, adventive eruptions. Fumarolic activity is rife within Suswa at the present time: steam is being emitted, probably derived from meteoric water but charged with CO2 and probably nitrogen. Analogies between the Suswa pattern of calderas and certain lunar crater patterns are briefly mentioned.  相似文献   

17.
18.
The Mount Edziza Volcanic Complex in north-central British Columbia includes a group of overlapping basaltic shields, salic composite volcanoes, domes and small calderas that range in age from 7.5 Ma to less than 2000 years B.P. The volcanic assemblage is chemically bimodal, comprising voluminous alkali olivine basalt and hawaiite, a salic suite of mainly peralkaline trachyte and comendite, plus a relatively small volume of intermediate rocks (trachybasalt, tristanite, mugearite, benmoreite). The complex is the product of five cycles of magmatic activity, each of which began with alkali olivine basalt and culminated with the eruption of salic magma. The regular chemical variation shown by almost 100 major- and trace-element analyses suggests a genetic lineage between the basic and salic members of each cycle. Least-squares mathematical modelling, indicates that the salic rocks (trachyte and comendite) have formed by fractionation of observed phenocryst and cumulate nodule mineral phases from a common alkali olivine basalt parent magma.Hawaiite is thought to be a cumulate rock, formed by partial fractionation and feldspar accumulation within rising columns of primary alkali olivine basalt. Fractionation leading from alkali olivine basalt through trachybasalt and trachyte to comendite is believed to have taken place where primary basalt became trapped in large crustal reservoirs. The early removal of olivine, clinopyroxene and plagioclase, leading to a trachytic residuum, and subsequent fractionation of mainly alkali feldspar, leading to the peralkaline end members, is consistent with major- and trace-element variation and with isotopic and REE data.The chemical diversity of the complex is attributed to its location over a zone of crustal extension where mantle-derived basalt, trapped in large high-level reservoirs, underwent prolonged fractionation.  相似文献   

19.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

20.
Geology of the peralkaline volcano at Pantelleria,Strait of Sicily   总被引:1,自引:1,他引:1  
Situated in a submerged continental rift, Pantelleria is a volcanic island with a subaerial eruptive history longer than 300 Ka. Its eruptive behavior, edifice morphologies, and complex, multiunit geologic history are representative of strongly peralkaline centers. It is dominated by the 6-km-wide Cinque Denti caldera, which formed ca. 45 Ka ago during eruption of the Green Tuff, a strongly rheomorphic unit zoned from pantellerite to trachyte and consisting of falls, surges, and pyroclastic flows. Soon after collapse, trachyte lava flows from an intracaldera central vent built a broad cone that compensated isostatically for the volume of the caldera and nearly filled it. Progressive chemical evolution of the chamber between 45 and 18 Ka ago is recorded in the increasing peralkalinity of the youngest lava of the intracaldera trachyte cone and the few lavas erupted northwest of the caldera. Beginning about 18 Ka ago, inflation of the chamber opened old ring fractures and new radial fractures, along which recently differentiated pantellerite constructed more than 25 pumice cones and shields. Continued uplift raised the northwest half of the intracaldera trachyte cone 275 m, creating the island's present summit, Montagna Grande, by trapdoor uplift. Pantellerite erupted along the trapdoor faults and their hingeline, forming numerous pumice cones and agglutinate sheets as well as five lava domes. Degassing and drawdown of the upper pantelleritic part of a compositionally and thermally stratified magma chamber during this 18-3-Ka episode led to entrainment of subjacent, crystal-rich, pantelleritic trachyte magma as crenulate inclusions. Progressive mixing between host and inclusions resulted in a secular decrease in the degree of evolution of the 0.82 km3 of magma erupted during the episode.The 45-Ka-old caldera is nested within the La Vecchia caldera, which is thought to have formed around 114 Ka ago. This older caldera was filled by three widespread welded units erupted 106, 94, and 79 Ka ago. Reactivation of the ring fracture ca. 67 Ka ago is indicated by venting of a large pantellerite centero and a chain of small shields along the ring fault. For each of the two nested calderas, the onset of postcaldera ring-fracture volcanism coincides with a low stand of sea level.Rates of chemical regeneration within the chamber are rapid, the 3% crystallization/Ka of the post-Green Tuff period being typical. Highly evolved pantellerites are rare, however, because intervals between major eruptions (averaging 13–6 Ka during the last 190 Ka) are short. Benmoreites and mugearites are entirely lacking. Fe-Ti-rich alkalic basalts have erupted peripherally along NW-trending lineaments parallel to the enclosing rift but not within the nested calderas, suggesting that felsic magma persists beneath them. The most recent basaltic eruption (in 1891) took place 4 km northwest of Pantelleria, manifesting the long-term northwestward migration of the volcanic focus. These strongly differentiated basalts reflect low-pressure fractional crystallization of partial melts of garnet peridotite that coalesce in small magma reservoirs replenished only infrequently in this continental rift environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号