首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大庆外围盆地地球物理场与盆地基底特征   总被引:3,自引:1,他引:2       下载免费PDF全文
根据收集到的大庆外围盆地的布格重力异常和航磁异常数据,对外围盆地中的8个盆地进行了地球物理场特征的分析.对各盆地的重力异常进行了由下地壳与上地幔的密度差引起的重力效应的剥离,对磁力异常进行了由居里面起伏引起的磁力效应的剥离.在此基础上应用调和级数法和遗传算法分别反演计算了这8个盆地的重力基底和磁性顶界面,并分析了其基底特征. 各盆地重力基底在0.2~9.0 km之间变化,磁性顶界面在1.8~9.8 km之间变化,其特征反映了各盆地的基本现状.  相似文献   

2.
21世纪重力与磁法勘探的展望   总被引:21,自引:18,他引:21  
对21世纪重力与磁法勘探的仪器,数据处理技术,解释理论与方法,应用领域等方面的发展方向进行了分析与展望,发展航空标量,矢量,梯度重力测量和航空全梯度磁力测量,三分量磁力测量,提高综合信息采集能力;开展卫星重磁测量,综合卫星,航空,地面重磁测量资料研究地球结构与构造;发展高精度数据处理技术;重磁异常弱信号的提取,不同深度重磁异常的划分,低纬底变倾角化磁极以及位场面延拓;发展复杂条件下三维重磁场多参数综合反演可视化技术以及快速自动反演技术;探索磁性多参数的应用新领域,充分发挥磁法在环境污染调查中的作用并开拓应用新领域。  相似文献   

3.
Regional–residual separation is essential in gravity and magnetic data interpretation and a variety of techniques have been proposed. Graphical determination of the regional allows geological information to be taken into account. Upward continuation can be used to obtain the regional field either empirically or using some hypothesis about the geology. In some cases, a matched filter can be designed and used to separate deep and shallow sources. Simple low pass filtering has also been used but without much success. Here we propose to use a non-linear filter approach to remove gravity and magnetic anomalies smaller than a given width. This technique attempts to mimic the graphical separation method. The results from synthetic models are presented as well as the results from a case study in eastern Canada and compared to regional gravity and magnetic anomalies obtained by other techniques. Contrary to the regional fields obtained by upward continuation, non-linear filtering does not have any physical meaning. However, its main advantage is that it gives a regional component of the gravity or magnetic field similar to the one obtained from a graphical separation.  相似文献   

4.
东北地区重磁场与地壳结构特征   总被引:8,自引:5,他引:3       下载免费PDF全文
分析了东北地区的重、磁场特征,同时对研究区的布格重力异常和航磁异常据进行了小波分析计算.根据分析与计算可知,东北地区重力场以北东走向为主,表现出该地区重力场的主要趋势.根据磁场的分布特征,可将研究区分为六个区域:呼和浩特以北磁场相对平静区;赤峰一带正负磁场交互变化区;海拉尔以南磁场缓变区;齐齐哈尔—依春磁场剧烈变化区;长春—沈阳负磁场平缓区;牡丹江—丹东磁场区.利用重力资料,应用调和级数法对研究区的莫霍界面进行了反演计算,得到了该地区莫霍界面深度分布.根据磁力资料采用遗传算法反演计算了研究区居里界面的深度分布.同时对研究区的地壳结构特征进行了探讨.  相似文献   

5.
Summary A simple method is designed for programming the gravity and magnetic calculations of a right circular cylinder (vertical or horizontal) by treating it as a combination of thin rectangular slabs. It takes only a few seconds to compute a profile of each kind and the accuracy is comparable to that obtained by using exact expressions (involving complete elliptic integrals) instead. The method is also applicable to cylindrical bodies of arbitrary cross-section and could as well be used for rapid computation of derivatives of gravity and magnetic anomalies.  相似文献   

6.
重磁异常解释断裂构造的处理方法及图示技术   总被引:2,自引:1,他引:2       下载免费PDF全文
利用重磁异常解释断裂是地质构造研究的主要手段之一.重磁异常解释断裂通常是在等值线图或剖面平面图上进行的,而重磁异常在进行等值线网格化成图时会造成微弱信息丢失,这些原因造成重磁异常解释断裂的多解性.本文对重磁异常数据在化极、曲面延拓处理的基础上,采用水平梯度法提取延拓曲面上的重磁异常梯度带,之后对断裂带进行窄化处理,通过图示技术将重磁异常数据转换成灰度值,图像的灰度值以变密度显示,形成彩色的变密度图像,这样就提高了数据图像识别断裂的视觉效果.该方法应用在鄂尔多斯盆地不同层次(时间序列)的断裂研究中,提取和识别重磁异常特征所反映的断裂信息,效果较好.  相似文献   

7.
In this paper, we present a case study on the use of the normalized source strength (NSS) for interpretation of magnetic and gravity gradient tensors data. This application arises in exploration of nickel, copper and platinum group element (Ni‐Cu‐PGE) deposits in the McFaulds Lake area, Northern Ontario, Canada. In this study, we have used the normalized source strength function derived from recent high resolution aeromagnetic and gravity gradiometry data for locating geological bodies. In our algorithm, we use maxima of the normalized source strength for estimating the horizontal location of the causative body. Then we estimate depth to the source and structural index at that point using the ratio between the normalized source strength and its vertical derivative calculated at two levels; the measurement level and a height h above the measurement level. To discriminate more reliable solutions from spurious ones, we reject solutions with unreasonable estimated structural indices. This method uses an upward continuation filter which reduces the effect of high frequency noise. In the magnetic case, the advantage is that, in general, the normalized magnetic source strength is relatively insensitive to magnetization direction, thus it provides more reliable information than standard techniques when geologic bodies carry remanent magnetization. For dipping gravity sources, the calculated normalized source strength yields a reliable estimate of the source location by peaking right above the top surface. Application of the method on aeromagnetic and gravity gradient tensor data sets from McFaulds Lake area indicates that most of the gravity and magnetic sources are located just beneath a 20 m thick (on average) overburden and delineated magnetic and gravity sources which can be probably approximated by geological contacts and thin dikes, come up to the overburden.  相似文献   

8.
本文导出了利用重力与磁异常及其高阶导数的功率谱计算密度体和磁性体上顶与下底埋深的近似公式,还提供了利用垂向或水平导数谱计算深度的方法。理论模型的试验结果表明,由近似公式计算的精度可以满足实际需要。本文最后根据一条重力剖面资料,计算了密度层上、下界面。  相似文献   

9.
The basic theoretical foundations of the spectral analysis of gravity and magnetic data based on the approximation approach have been considered and corresponding expressions implementing various statements of the F-approximation method have been derived [Strakhov and Kerimov, 1999; 2000; 2001]. The author considered the algorithms and computer implementation of the F-approximation of anomalous gravity and magnetic fields presented in the results of testing with the use of a number of model examples and data on the accuracy of the model field approximation earlier on in [Kerimov, 2003]. In this paper, I consider methodological features of constructing the F-approximation from the detailed gravity and magnetic surveys, anomalous gravity and magnetic fields reconstructed with the use of the F -approximation, and examples of the field transforms obtained with the use of this approach.  相似文献   

10.
A high‐resolution method to image the horizontal boundaries of gravity and magnetic sources is presented (the enhanced horizontal derivative (EHD) method). The EHD is formed by taking the horizontal derivative of a sum of vertical derivatives of increasing order. The location of EHD maxima is used to outline the source boundaries. While for gravity anomalies the method can be applied immediately, magnetic anomalies should be previously reduced to the pole. We found that working on reduced‐to‐the‐pole magnetic anomalies leads to better results than those obtainable by working on magnetic anomalies in dipolar form, even when the magnetization direction parameters are not well estimated. This is confirmed also for other popular methods used to estimate the horizontal location of potential fields source boundaries. The EHD method is highly flexible, and different conditions of signal‐to‐noise ratios and depths‐to‐source can be treated by an appropriate selection of the terms of the summation. A strategy to perform high‐order vertical derivatives is also suggested. This involves both frequency‐ and space‐domain transformations and gives more stable results than the usual Fourier method. The high resolution of the EHD method is demonstrated on a number of synthetic gravity and magnetic fields due to isolated as well as to interfering deep‐seated prismatic sources. The resolving power of this method was tested also by comparing the results with those obtained by another high‐resolution method based on the analytic signal. The success of the EHD method in the definition of the source boundary is due to the fact that it conveys efficiently all the different boundary information contained in any single term of the sum. Application to a magnetic data set of a volcanic area in southern Italy helped to define the probable boundaries of a calderic collapse, marked by a number of magmatic intrusions. Previous interpretations of gravity and magnetic fields suggested a subcircular shape for this caldera, the boundaries of which are imaged with better detail using the EHD method.  相似文献   

11.
This study investigates the utility of the potential fields (gravity and magnetics) in volcanic settings as observed on the Møre margin. Synthetic models are used to investigate the effect of volcanics on the gravity and magnetic fields. The focus is on detecting sub-basaltic basement structures. The methods applied to the models are Euler deconvolution on magnetic data, gravity gradients and integrated 3D gravity and magnetic forward modelling. The same methods are used on the Møre margin and the results compared to the synthetic models. The Euler deconvolution on the magnetic signal does provide limited depth solutions in the volcanic environment and the use of different observation levels does not enhance the results. Forward gravity and magnetic models provide a valuable tool to estimate both the basalt and sub-basaltic sedimentary thickness but are limited by the ambiguity inherent in potential field methods. The use of gravity gradients significantly decreases the available model solutions and provides boundary detection even in sub-basaltic settings.  相似文献   

12.
Inversion of gravity and/or magnetic data attempts to recover the density and/or magnetic susceptibility distribution in a 3D earth model for subsequent geological interpretation. This is a challenging problem for a number of reasons. First, airborne gravity and magnetic surveys are characterized by very large data volumes. Second, the 3D modelling of data from large‐scale surveys is a computationally challenging problem. Third, gravity and magnetic data are finite and noisy and their inversion is ill posed so regularization must be introduced for the recovery of the most geologically plausible solutions from an infinite number of mathematically equivalent solutions. These difficulties and how they can be addressed in terms of large‐scale 3D potential field inversion are discussed in this paper. Since potential fields are linear, they lend themselves to full parallelization with near‐linear scaling on modern parallel computers. Moreover, we exploit the fact that an instrument’s sensitivity (or footprint) is considerably smaller than the survey area. As multiple footprints superimpose themselves over the same 3D earth model, the sensitivity matrix for the entire earth model is constructed. We use the re‐weighted regularized conjugate gradient method for minimizing the objective functional and incorporate a wide variety of regularization options. We demonstrate our approach with the 3D inversion of 1743 line km of FALCON gravity gradiometry and magnetic data acquired over the Timmins district in Ontario, Canada. Our results are shown to be in good agreement with independent interpretations of the same data.  相似文献   

13.
为了降低单一地球物理方法反演的多解性及受噪声的影响程度,本文围绕重力、磁法和大地电磁法开展了三维联合反演的研究.重、磁采用基于对数障碍法的正则化反演算法,大地电磁使用limited-memory BroydenFletcher-Goldfarb-Shanno(L-BFGS)反演算法,引入交叉梯度函数实现了三种物性结构的相互耦合,最终开发出一套重磁电三维联合反演算法,并实现MPI并行加速计算.通过理论模型算例验证了算法的准确性,结果表明:不论是单棱柱体模型还是组合棱柱体模型,联合反演结果相较单独反演对于异常体的空间形态刻画以及物性数值恢复具有较好的提升;单棱柱体模型算例使得异常体的物性参数(密度、磁化率和电阻率)更加接近于真实的物性参数;组合棱柱体模型的联合反演结果不仅仅消除了围岩物性参数的假异常,而且还增强了异常体边界结构的恢复程度.  相似文献   

14.
有限长圆柱体磁异常场全空间正演方法   总被引:2,自引:0,他引:2       下载免费PDF全文
在经典位场理论中,许多简单形体位场异常难以通过积分得到全空间的解析式.圆柱体是一类很重要的理论模型体,常用于模拟圆柱状地质体或非地质体(如管线),但目前还不能用解析公式正演有限长圆柱体在三维空间里的磁异常,而多是采用近似简化为有限长磁偶极子或线模型代替.对于有限长圆柱体,特别是半径相对于上顶埋深较大时,这种近似的误差不可忽略.本文利用共轭复数变量替换法,推导出有限长圆柱体在全空间的引力位一阶、二阶导数,利用Poisson关系得到磁异常正演公式,进而利用有限长圆柱体磁异常正演公式求解管状体的磁异常,得到不同磁化方向、不同大小的管线产生的磁场的特征,并将其推广到截面为椭圆的情况.最后通过模拟计算定量给出了将圆柱体近似为线模型的条件.  相似文献   

15.
This paper introduces the conversion of Euler's equation from a Cartesian coordinate system to a radial coordinate system, and then demonstrates that for sources of the type 1/rN (where r is the distance to the source, and N is the structural index) it can be solved at each point in space without the need for inversion, for a known structural index. It is shown that although the distance to the source that is obtained from Euler's equation depends on the structural index used, the direction to the source does not. For some models, such as the gravity and magnetic response of a contact, calculation of the analytic signal amplitude of the data is necessary prior to the application of the method. Effective noise attenuation strategies, such as the use of moving windows of data points, are also discussed. The method is applied to gravity and magnetic data from South Africa, and yields plausible results.  相似文献   

16.
位场数据解释的Theta-Depth法   总被引:1,自引:0,他引:1       下载免费PDF全文
Theta图是利用位场(重磁)数据识别边界的常用方法,其表达式为重磁异常水平变化与垂直变化的比值函数.该方法计算浅源地质体边界的效果较好,而由于深源位场数据在换算过程中会产生趋同效应,在深源地质体识别应用中计算结果不准确,为此,本文提出Theta-Depth法并进行地质体埋深的计算.首先给出直接利用Theta图像进行场源体深度估算的方法,然后推导出基于Theta导数的线性方程来自动估算场源位置参数,本文方法可有效地利用Theta图像的特征为约束条件来提高反演结果的精度.理论模型试验证明本文提出的Theta-Depth法能有效地计算出场源体位置和深度.将该方法应用于满都拉地区实测磁数据的解释,帮助圈定了矿脉的分布.  相似文献   

17.
I investigate large-scale deep crustal structures of the Nankai subduction zone and neighboring region using regional magnetic and gravity anomalies, heat flow measurements, and earthquake hypocenters. It is found that ages, dip angles, and geothermal states of the subducting slab have direct influences on mantle wedge serpentinization. The weakest serpentinization observed in the Nankai forearc region is associated with the youngest downgoing plate of the Shikoku Basin. Conspicuous gravity anomalies identified in the forearc region are coincidental spatially with magnetic anomalies after the reduction to the pole, a mathematical procedure that helps relocate magnetic sources and boundaries, and allows us to more easily interpret magnetic data. It is argued that these patches of magnetic and gravity anomalies are caused by the same sources of anomalous density and magnetization, and are linked directly to preexisting structures such as magnetic anomalies and their boundaries in the subducting oceanic crust. Since the gravity and magnetic anomaly patches are found to be closely related to interplate seismogenic behaviors in the Nankai subduction zone, I suggest that major magnetic boundaries in the Shikoku Basin are likely weak places for slab tears that trigger seismic segmentations along the subduction zone.  相似文献   

18.
基于剩余异常相关成像的重磁物性反演方法   总被引:8,自引:3,他引:5       下载免费PDF全文
将场源区剖分成长方体单元,通过采集的重磁数据反演出这些单元的密度或者磁化率变化,勾画出场源的分布图像,这种方式是重磁三维反演的重要方向.重磁相关成像通过计算测量的重磁异常与地下各点在测区上的重磁异常的归一化相关,显示出异常地质体的空间赋存状态和等效剩余重磁物性.该方法计算速度快,方法简单、稳定,但是反演的结果只是在-1到+1之间的等效物性,不能够直接反演剩余密度或者磁化率,并且无法引入已知的地质约束.本文通过对物性模型的正演和实测结果的残差进行相关成像,迭代更新物性模型实现对物性参数的反演过程.模型实验证明该方法相对相关成像不仅能提高分辨率,还能够得到真正的物性参数.  相似文献   

19.
Summary The effect of an additional homogeneous magnetic field with an intensity of 0–4.5 Oe on the Worden quartz gravity meter No. 961 and on Sharpe quartz gravity meters Nos 173 and 174 was tested. Whereas no effect was observed with the Worden gravity meter, the magnetic field had a measurable effect on both the Sharpe gravity meters. The largest deviation of the reading beam is caused by the horizontal component of the magnetic field which acts in the plane of oscillation of the gravity-meter arm. The Sharpe gravity meter No. 173 is considerably sensitive; a field of 0.2 Oe intensity, corresponding to the magnitude of the horizontal component of the geomagnetic field in mid-latitudes, causes an error in the measurement of gravity of as much as 0.08 mGal. With a view to the different behaviours of the individual quartz gravity meters of the same type in a magnetic field, it should prove expedient to carry out check measurements with all gravity meters and, with regard to the sensitivity of the gravity meter to the magnetic field and the required accuracy of the gravity determination, take into account this perturbing factor in field measurements, as well as laboratory tests of gravity meters.  相似文献   

20.
中国中南地区综合地质地球物理研究   总被引:16,自引:4,他引:12       下载免费PDF全文
利用重、磁和天然地震资料对中南地区进行了综合地质地球物理研究.根据研究区的重、磁异常的分布特征,可将其分为4个重力异常区、3个航磁异常区.根据重力资料反演计算得到的研究区的地壳厚度在295~41 km之间,总的趋势为西厚东薄,地壳厚度与地形起伏基本上呈镜像关系.根据磁力资料计算得到的研究区居里界面在12~40 km之间变化.地震层析成像结果表明研究区内的速度分布总体上体现了纵横交错的断块特征.在纵向尺度上,江汉-洞庭盆地以及周缘造山带的上地壳结构变化不大,中地壳和下地壳则普遍受到现今构造活动的改造,以致岩石的结构发生了一定的变化.它们主要表现为低速区域的扩大,尤其是在地壳下部尤为突出,这与断陷盆地的拉张以及造山带岩石层的底侵和拆沉作用密切相关.通过对研究区地球物理场的分析计算,在研究区共提取主要断裂带34条.根据岩石层板块大地构造理论,依据岩石层结构、地壳结构和结晶基底等深部结构的不同,将研究区中板内不同构造单元——块体作为一级构造单元,块体之间的深大断裂带作为块体的边界——块体结合带,据此原则在研究区中划分出两个一级构造单元,五个二级构造单元.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号