首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   

2.
We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.  相似文献   

3.
A basic analysis is presented for a series of regional climate change simulations that were conducted by the Swedish Rossby Centre and contribute to the PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) project. For each of the two driving global models HadAM3H and ECHAM4/OPYC3, a 30-year control run and two 30-year scenario runs (based on the SRES A2 and B2 emission scenarios) were made with the regional model. In this way, four realizations of climate change from 1961–1990 to 2071–2100 were obtained. The simulated changes are larger for the A2 than the B2 scenario (although with few qualitative differences) and in most cases in the ECHAM4/OPYC3-driven (RE) than in the HadAM3H-driven (RH) regional simulations. In all the scenario runs, the warming in northern Europe is largest in winter or late autumn. In central and southern Europe, the warming peaks in summer when it locally reaches 10 °C in the RE-A2 simulation and 6–7 °C in the RH-A2 and RE-B2 simulations. The four simulations agree on a general increase in precipitation in northern Europe especially in winter and on a general decrease in precipitation in southern and central Europe in summer, but the magnitude and the geographical patterns of the change differ markedly between RH and RE. This reflects very different changes in the atmospheric circulation during the winter half-year, which also lead to quite different simulated changes in windiness. All four simulations show a large increase in the lowest minimum temperatures in northern, central and eastern Europe, most likely due to reduced snow cover. Extreme daily precipitation increases even in most of those areas where the mean annual precipitation decreases.  相似文献   

4.
We analyze the control runs and 2 × CO2 projections (5-yearlengths) of the CSIRO Mk 2 GCM and the RegCM2 regional climate model, which was nested in the CSIRO GCM, over the Southeastern U.S.; and we present the development of climate scenarios for use in an integrated assessment of agriculture. The RegCM exhibits smaller biases in both maximum and minimum temperature compared to the CSIRO. Domain average precipitation biases are generally negative and relatively small in winter, spring, and fall, but both models produce large positive biases in summer, that of the RegCM being the larger. Spatial pattern correlations of the model control runs and observations show that the RegCM reproduces better than the CSIRO the spatial patterns of precipitation, minimum and maximum temperature in all seasons. Under climate change conditions, the most salient feature from the point of view of scenarios for agriculture is the large decreases in summer precipitation, about 20% in the CSIRO and 30% in the RegCM. Increases in springprecipitation are found in both models, about 35% in the CSIRO and 25% in theRegCM. Precipitation decreases of about 20% dominate in winter in the CSIRO,while a more complex pattern of increases and decreases is exhibited by the regional model. Temperature increases by 3 to 5 °C in the CSIRO, the higher values dominating in winter and spring. In the RegCM, temperature increases are much more spatially and temporally variable, ranging from 1 to 7 °C acrossall months and grids. In summer large increases (up to 7 °C) in maximum temperature are found in the northeastern part of the domain where maximum drying occurs.  相似文献   

5.
The paper deals with a selection of the climatological baseline, GCM validity and construction of the climate change scenarios for an impact assessment in the Czech territory. The period of 1961–1990 has been selected as the climatological baseline. The corresponding database includes more than 50 monthly mean temperature and precipitation series, and 16 time series of daily meteorological data that contain also the solar radiation data. The 1× CO2 outputs produced by four GCMs, provided by the CSMT (GISS, GFD30, GFD01, and CCCM), were compared with observed temperature and precipitation conditions in western and central Europe with a particular attention devoted to the Czech territory. The GCM ability to simulate annual cycles of temperature, precipitation and radiation was thoroughly examined. The GISS and CCCM were selected as a basis for constructing climate change scenarios as they simulated reasonably the observed patterns. According to the GISS variant, 2× CO2 climate assumes a higher winter and lower summer warming, and an increase in annual precipitation amounts. A dangerous combination of the summer temperature increase and declining precipitation amounts is a specific feature of the CCCM scenario. An incremental scenario for temperature and precipitation is based on the combination of prescribed changes in both annual means and annual courses.  相似文献   

6.
Palynological, geomorphological, and relict vegetation evidence point to the existence of cooler and more humid conditions along semiarid and temperate Chile during the Pleistocene. Departing from an actualistic model, and utilizing a regression technique that includes significant independent variables on the basis of R 2 and F statistics, the best fit multivariable model was produced for annual rainfall and snowline elevation. Predicted values for rainfall are obtained by controlling sea surface temperatures and air temperatures (the most significant variables in the model) at different latitudes. A variation of only 1 °C of the winter sea and air temperatures induces more than a doubling of the annual precipitation in north-central Chile, and increases by nearly fifty percent in southern Chile. Entering the predicted values of precipitation and lowering the winter temperatures by 1 or 2 °C produces a slight depression of the snowline in semiarid north-central Chile and a significant descent in southern Chile. The predicted depression of the snowline coincided well with geomorphological evidence of glacial advances and fossil periglacial phenomena in the Andes. Cooling and increased precipitation during the Pleistocene pluvial elicited northward shifts of the temperate rainforest of southern Chile in the order of 7 deg latitude.  相似文献   

7.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

8.
1.5和2℃升温阈值下中国温度和降水变化的预估   总被引:1,自引:0,他引:1  
基于CMIP5耦合气候模式模拟结果对1.5和2℃升温阈值时中国温度和降水变化的分析表明,1.5℃升温阈值时,中国年平均升温由南向北加强且在青藏高原地区有所放大,季节尺度上升温的空间分布与其类似,就区域平均而言,RCP2.6、RCP4.5和RCP8.5情景下中国年平均气温分别升高1.83、1.75和1.88℃,气温的季节变幅以冬季升高最为显著;除华南和西南地区外中国大部分地区年平均降水量增多,降水的季节差异明显,以夏季降水的分布模态与年平均降水量的分布最为相似,区域平均的年降水量分别增加5.03%、2.82%和3.27%,季节尺度上以冬季降水增幅最大。2℃升温阈值时,RCP4.5和RCP8.5情景下中国年平均温度的空间分布与1.5℃升温阈值基本一致,中国年平均气温分别升高2.49和2.54℃,季节尺度上气温的变化以秋、冬季增幅最大;中国范围内年平均降水量基本表现为增多趋势,其中,西北和长江中下游部分地区表现为明显的季节差异,区域平均的年降水量分别增加6.26%和5.86%。与1.5℃升温阈值相比较,2℃升温阈值时中国年平均温度在RCP4.5和RCP8.5情景下分别升高0.74和0.76℃,降水则分别增加3.44%和2.59%,空间上温度升高以东北、西北和青藏高原最为显著,降水则在东北、华北、青藏高原和华南地区增加最为明显。   相似文献   

9.
A hydrologic model was driven by the climate projected by 11 GCMs under two emissions scenarios (the higher emission SRES A2 and the lower emission SRES B1) to investigate whether the projected hydrologic changes by 2071–2100 have a high statistical confidence, and to determine the confidence level that the A2 and B1 emissions scenarios produce differing impacts. There are highly significant average temperature increases by 2071–2100 of 3.7°C under A2 and 2.4°C under B1; July increases are 5°C for A2 and 3°C for B1. Two high confidence hydrologic impacts are increasing winter streamflow and decreasing late spring and summer flow. Less snow at the end of winter is a confident projection, as is earlier arrival of the annual flow volume, which has important implications on California water management. The two emissions pathways show some differing impacts with high confidence: the degree of warming expected, the amount of decline in summer low flows, the shift to earlier streamflow timing, and the decline in end-of-winter snow pack, with more extreme impacts under higher emissions in all cases. This indicates that future emissions scenarios play a significant role in the degree of impacts to water resources in California.  相似文献   

10.
The WAVES model was used to simulate the effect of global warming on soil moisture on the semi-arid Taihang Mountain in China. Parameters of the WAVES model were first adjusted according to soil moisture data from a field global warming experiment. Then, the reliability of WAVES in predicting soil moisture changes induced by climatic change was confirmed by comparing the simulated and observed soil moisture values under different climatic conditions and plant growth rates of another field treatment. Next, 10 climate change scenarios incorporating increases in temperature and changes in precipitation were designed. When a simulation was conducted using the leaf area index (LAI) growth pattern from a field experiment under the present climatic conditions, the results suggested that the combination of temperature increase and precipitation decrease would greatly decrease soil water content throughout the entire simulation period. On the other hand, only when precipitation increased by 20% and temperatureincreased by 2 °C, the effect of precipitation increase on soil moisture was obviously positive. Although soil moisture conditions in the T2P1 (temperature increase by 2 °C and precipitation increase by 10%) and T4P2 (temperature increase by 4 °C and precipitation increase by 20%) scenarios were slightly better during the rainy season and notmuch changed before the rainy season, the positive effect of 10%precipitation increase on soil moisture was totally offset by moisture decrease caused bya 4 °C temperature increase in the T4P1 scenario. At the same time, the trends of soil-moisture change were highly coincident with predicted changes in productivity. Finally, the predicted LAI values from other studies were combined with the climatic change scenarios and used in the simulation. The results showed that changes in LAI alleviated, at least to some extent, the effects of temperature and precipitation changes on soil moisture.  相似文献   

11.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

12.
石家庄市气候变化特征分析   总被引:4,自引:0,他引:4  
赵国石  郝立生 《气象科技》2007,35(6):797-802
利用石家庄市1951~2005年气温、降水资料,采用变率分析、趋势分析、小波变换和Mann-Kendall检验等方法对石家庄近55年的气候变化特征进行了分析。结果表明:①夏季、秋季气温变率小,冬季气温变化幅度最大;②年气温和四季气温线性上升趋势显著,春季、冬季升温最明显,近55年气候变暖主要是春季和冬季气温升高造成的。年降水量和四季降水量不存在线性变化趋势;③四季气温和年气温变化的周期性不明显,而降水量变化存在周期性;④石家庄四季气温和年气温在20世纪80年代末和90年初发生了明显的气候突变,而四季降水量和年降水量变化没有发生明显的气候突变。  相似文献   

13.
1961—2006年云南可利用降水量演变特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用云南122个测站1961—2006年逐月降水量、气温观测资料,依据高桥浩一郎的陆面实际蒸散发经验公式,计算了云南可利用降水量,分析了全球气候变暖背景下云南可利用降水量的变化特征,获得了一些有意义的结果:1)近50年来云南可利用降水量在春季增加,而其余季节减少,特别是夏季可利用降水量明显减少,导致云南年可利用降水量明显减少。2)云南可利用降水量除冬季年代际变化不明显,年际变化明显外,其余季节及年可利用降水量都存在明显的年代际及年际变化。3)从区域趋势变化看,云南大部可利用降水量在冬、春季以增加为主;夏季以减少为主;秋季东部减少,西部增加;全年可利用降水量东部、南部以减少为主,其余地区以增加为主。4)年可利用降水量在全球气候偏暖年以偏少为主,而在偏冷年则以偏多为主。  相似文献   

14.
The trends and features of China’s climatic change in the past and future are analysed by applying station obser-vations and GCM simulation results. Nationally, the country has warmed by 0.3oC in annual mean air temperature and decreased by 5% in annual precipitation over 1951-1990. Regionally, temperature change has varied from a cooling of 0.3oC in Southwest China to a warming of 1.0oC in Northeast China. With the exception of South China, all regions of China have shown a declination in precipitation. Climatic change has the features of increasing remark-ably in winter temperature and decreasing obviously in summer precipitation. Under doubled CO2 concentration, climatic change in China will tend to be warmer and moister, with increases of 4.5oC in annual mean air temperature and 11% in annual precipitation on the national scale. Future climatic change will reduce the temporal and spatial differences of climatic factors.  相似文献   

15.
分析比较了中蒙(35°N~50°N,75°E~105°E)、中亚(28°N~50°N,50°E~67°E)和北非(15°N~32°N,17°W~32°E)三个典型干旱区水汽输送特征的异同,及其1961~2010年间的降水时空变化,分析了水汽来源和输送变化及其可能原因。结果显示,由于受不同的气候系统影响,中蒙、北非和中亚干旱区的降水在年内变化上有着显著不同。中蒙和北非干旱区降水呈现夏季风降水的特征;而中亚干旱区降水则为更多受到冬季风的影响。1961~2010年,随着全球气温上升,中蒙干旱区冬季纬向水汽输送增加而经向输送减少,总水汽输送增加;中亚干旱区冬季纬向输送减少而经向增加,总水汽输送减少;北非干旱区冬季纬向输送增加而经向输送减少,总水汽输送增加。夏季中蒙和北非干旱区经向、纬向输送均减小,中亚干旱区夏季纬向输送减少而经向减少,总输送增加。相应的,中蒙干旱区年、冬季和夏季降水分别以4.2、1.3和1.0 mm/10 a的趋势增加;而中亚干旱区冬季(1.2 mm/10 a)和夏季(0.1 mm/10 a)降水增加,年降水则呈减少趋势(-0.8 mm/10 a);北非干旱区年降水和夏季降水分别以0.5 mm/10 a和0.1 mm/10 a的速率增加。冬季中蒙干旱区主要水汽来源是水汽经向输送,而中亚干旱区水汽主要为纬向输送,经纬向水汽均为净输出是北非干旱区降水极少的主要原因,平均总水汽输送量约为-9.48×104 kg/s。冬季低纬度和高纬度环流通过定常波影响干旱区冬季降水。中蒙和中亚干旱区冬季降水主要受西太平洋到印度洋由南向北的波列影响,北非干旱区冬季降水主要和北大西洋上空由北到南的波列相联系。各干旱区的降水对海温变化有着不同的响应:中蒙干旱区冬季降水与冬季太平洋西海岸和印度洋海温呈显著正相关,夏季与海温相关不显著;中亚干旱区与地中海和阿拉伯海温相关,且与阿拉伯海温为正相关。  相似文献   

16.
华中地区2030年前气温和降水量变化预估   总被引:3,自引:0,他引:3  
 根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

17.
为了研究中国不同区域气候变化特征,将全国按照气候区域划分为11个气候区,并利用1951—2009年中国194个国家基本/基准站月、年气温和降水观测资料,对全国及每个气候区平均温度及降水量的年和季节变化特征进行分析。结果表明:中国及各地区增温趋势均为极显著增加,尤其近20 a增温速度更快;而2007年成为有记录以来最暖的一年;中国冬季平均温度上升趋势最明显,春季次之,夏季几乎没有变化。中国平均年总降水量20世纪50年代最多,2000年代最少;而华北地区的年降水量减少最快;在四季降水中,中国只有夏季降水量波动略有增加,且各区域降水分布具有明显的南北差异特征。  相似文献   

18.
Effects of Land Cover Conversion on Surface Climate   总被引:11,自引:0,他引:11  
This study investigates the effects of large-scale human modification of land cover on regional and global climate. A general circulation model (Colorado State University GCM) coupled to a biophysically-based land surface model (SiB2) was used to run two 15-yr climate simulations. The control run used current vegetation distribution as observed by satellite for the year 1987 to derive the vegetation's physiological and morphological properties. The twin simulation used a realistic approximation of vegetation type distribution that would exist in the absence of human disturbance.In temperate latitudes, where anthropogenic modification of the landscape has converted large areas of forest and grassland to cropland, conversion cools canopy temperatures up to 0.7 ° C in summer and 1.1 ° C in winter. This cooling results from both (1) morphological changes in vegetation which increase albedo and (2) physiological changes in vegetation which increase latent heat flux of crops compared with undisturbed vegetation during the growing season. In the tropics and subtropics, conversion warms canopy temperature by about 0.8 ° C year round. The warming results from a combination of morphological changes in vegetation offset by physiological changes that reduce latent heat flux of existing compared with undisturbed vegetation. If water efficient, tropical C4 grasses replace C3 vegetation, latent heat flux is further reduced.The overall effect of land cover conversion is cooling in temperate latitudes and warming in the tropics. Because the effects are opposite in sign in tropics and middle latitudes, they cancel each other when averaged globally. Over land, the surface temperature increased by 0.2 C in winter and remained essentially unchanged in summer. The effects on land surface hydrology were also small when averaged globally. The results suggest that the effects of land use change of the observed magnitude do not have a strong impact on the globally averaged climate but their signature at regional scales is significant and vary according to the type of land cover conversion.  相似文献   

19.
利用喜马拉雅山脉中段南、北两侧6个气象站1971-2007年逐月气温、降水资料,分析了该地区气候变化趋势、异常及突变特征。结果表明:喜马拉雅山脉中段南、北两侧年、季平均气温均呈明显上升趋势,冬半年升温幅度大于夏半年。年及夏半年平均气温均为随年代升高趋势,而冬半年气温在20世纪80年代较70年代略偏低,90年代后又逐渐升高。21世纪前7 a升温最为显著,较20世纪70年代升高0.6~1.1℃。1997年该地区南侧年平均气温发生突变,突变后增温趋势更加明显。20世纪90年代末以来,异常偏暖年份出现的几率明显增加,且南侧多于北侧。喜马拉雅山脉中段北侧年及冬夏半年降水均呈增多趋势。南侧年和夏半年降水呈减少趋势,冬半年为增多趋势。降水异常出现在20世纪80、90年代,21世纪后降水出现异常的概率明显减少。近40 a,北侧气候具有暖湿化趋势;南侧冬半年与之类似,但夏半年及全年呈暖干化趋势。  相似文献   

20.
Abstract

As part of a study on the effects of climatic variability and change on the sustainability of agriculture in Alberto, the modelling performance of the second‐generation Canadian Climate Centre GCM (general circulation model) is examined. For the region in general, the simulation of 1 × CO2 mean temperature is generally better than that for mean precipitation, and summer is the season best modelled for each variable. At the scale of individual grid squares, DJF (December, January, February) (temperature) and JJA (June, July, August) (precipitation) are the seasons best modelled. The GCM‐simulated increases in mean annual temperature resulting from a doubling of CO2 are of the order of 5 to 6°C in the Prairie region, with much of this increase resulting from substantial warming in the winter and spring. Increases in mean annual precipitation are of the order of 50 to 150 mm (changes of +5 to +15%), with the greatest changes again occurring in winter and spring. As far as the limited GCM run durations allow, temperature and precipitation variance generally show no significant changes from a 1 × CO2 to a 2 × CO2 climate. Increased precipitation in winter and spring does not result in greater snow accumulations owing to the magnitude of warming; and significant decreases in soil moisture content occur in summer and fall. The resulting effects on the growing season and moisture regime have the potential to affect agricultural practices in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号