首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The modern Eel River shelf and analogous Pleistocene Rio Dell Formation in northern California provide an ideal opportunity to combine the advantages of studying a modern environment with those of studying an ancient sequence, and thereby enables further understanding of muddy-shelf processes. The modern shelf is the site of accumulation of a thick deposit of Holocene mud. Both large-scale sediment distribution patterns and small-scale stratigraphy on the shelf indicate that river floods play an important role in sediment accumulation, even on a high-energy, ‘storm-dominated’ coast. The major factors in preservation of this flood ‘signature’ are the cohesive behaviour of fine-grained sediments and episodically rapid rates of sediment input. The Rio Dell Formation includes approximately 400 m of mostly fine-grained shelf deposits that accumulated offshore from a palaeo-Eel River mouth. The shelf sediments comprise four depositional sequences. Sequence 1 records progradation from outer to inner shelf depths. Facies trends closely resemble across-shelf trends on the modern shelf, suggesting that processes were similar. Detailed examination of these deposits provides insight into the nature and role of various processes on both the ancient and modern shelf. Muddy facies of the Rio Dell sequence are characterized by bioturbated, clayey silts, interbedded with event layers of several types. Clay-rich silt layers are interpreted as flood deposits and physically stratified, coarse-silt layers are interpreted to record transport and deposition of coarse silt on the midshelf during storms. Sediment-transport calculations and consideration of grain-size distributions of bioturbated sediments, which form the bulk of the Rio Dell sequence, suggest that these sediments are the result of biological homogenization of the fine-grained flood deposits and of the coarser-grained storm deposits. The results of this study in general indicate that fine-grained shelf deposits do preserve a distinguishable, if subtle, record of depositional processes.  相似文献   

2.
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a  相似文献   

3.
The history of the formation of sedimentary basins located predominantly in the western shelf of the Chukchi Sea is considered along with the data on the geology of adjacent areas of the American part of the sea and northern Alaska reported in the available publications on this region. The main lithotectonic complexes that correspond to particular stages of evolution of the region are identified. The tectonic rearrangement of the structural grain in response to the formation of the Canada Basin resulted in the development of the North Chukchi Trough. Intense subsidence of this trough and accumulation of thick sedimentary sequence favored, in turn, the balanced inversion uplift of the Wrangel-Herald Zone spatially related to depocenters of older sediments. Vigorous uplift and folding ceased in the Albian. In the geologic record, these processes are marked by unconformity and overstep of the older structural features. The inversion uplifts continued to rise later. Analysis of the data available provides new insights into the structure and evolution of the region. The sedimentary basins with a great thickness of their fill were favorable for generation and accumulation of hydrocarbons. The large uplifted blocks, extensive wedge-out zones, and stratigraphic unconformities at the walls of troughs and uplift slopes are especially favorable for hydrocarbon accumulation. Permissive beds are correlated with the Neocomian-Aptian sequence in Alaska that hosts oil and gas fields. The Upper Paleozoic and Lower Mesozoic strata, which are the main petroliferous sedimentary rocks in Alaska, may occur at a shallow depth in the Wrangel-Herald Inversion Zone. The conclusions drawn in this paper should be taken into account during reappraisal of the petroleum resources throughout the entire Chukchi shelf. At present, several oil and gas prospects are outlined in the Russian part of the Chukchi Sea.  相似文献   

4.
Outcrop-based sequence stratigraphic analysis and palynological biofacies were used to define depositional sequences and their bounding surfaces, and build a sequence stratigraphic model for the Upper Cretaceous succession of the Afikpo Sub-basin. Four unconformity-bounded third-order depositional sequences were identified. Sequence 1 comprises the Nkporo Formation and is subdivided into lowstand system tract (LST) representing an incised valley fill and transgressive systems tract (TST) consisting of estuarine and marine shales and mudstones. The base of the sequence is an angular unconformity correlated to the 77.5 Ma sequence boundary (SB) and the maximum flooding surface (MFS) is dated at 76 Ma. Sequence 2 is diachronous and straddles the lithostratigraphic boundary of the Nkporo and Mamu formations. The upper SB is dated at 71 Ma while associated MFS is dated at 73.5 Ma. Sequence 3 consists of the upper Mamu Formation and the Ajali Formation. The upper SB of sequence 3 is at 68 Ma while the MFS is dated at 69.8 Ma. Sequence 4 is the topmost depositional sequence belonging to the Nsukka Formation. The upper SB is placed at 66.5 Ma. The MFS within this sequence is dated at 67.8 Ma. The sequences encompass from tidally influenced bay head delta and central estuarine environments to coastal and shallow marine shelf environments. Stratigraphic architecture and facies types show that sequence development was controlled to a great extent by eustatic sea level variations though differential subsidence rates encouraged differential rates of sediment supply and rates of sea level change along different segments of the shoreline.  相似文献   

5.
The Roer Valley Rift System (RVRS) is located between the West European rift and the North Sea rift system. During the Cenozoic, the RVRS was characterized by several periods of subsidence and inversion, which are linked to the evolution of the adjacent rift systems. Combination of subsidence analysis and results from the analysis of thickness distributions and fault systems allows the determination of the Cenozoic evolution and quantification of the subsidence. During the Early Paleocene, the RVRS was inverted (Laramide phase). The backstripping method shows that the RVRS was subsequently mainly affected by two periods of subsidence, during the Late Paleocene and the Oligocene–Quaternary time intervals, separated by an inversion phase during the Late Eocene. During the Oligocene and Miocene periods, the thickness of the sediments and the distribution of the active faults reveal a radical rotation of the direction of extension by about 70–80° (counter clockwise). Integration of these results at a European scale indicates that the Late Paleocene subsidence was related to the evolution of the North Sea basins, whereas the Oligocene–Quaternary subsidence is connected to the West European rift evolution. The distribution of the inverted provinces also shows that the Early Paleocene inversion (Laramide phase) has affected the whole European crust, whereas the Late Eocene inversion was restricted to the southern North Sea basins and the Channel area. Finally, comparison of these deformations in the European crust with the evolution of the Alpine chain suggests that the formation of the Alps has controlled the evolution of the European crust since the beginning of the Cenozoic.  相似文献   

6.
A genetic analysis of the underground water from the White Tiger deposit (South Vietnam shelf) distinguished two types of water: poorly mineralized hydrocarbon-sodium (inversion) water of the sedimentary cover and residual hydrothermal-chloride-sodium water of the basement. Upon comparing the salt complex of the anhydrous basement oil, the chemical composition of the sedimentary cover water, and the residual basement hydrotherms, it is concluded that primary oil was transported by a middle temperature hydrocarbon-sulfate-sodium endogenic fluid and not by chloride-sodium hydrotherms or sedimentary cover water.  相似文献   

7.
Various bituminous artifacts were excavated from the Tall-e Abu Chizan, a late prehistoric (Middle Susiana to Middle Uruk) settlement on the middle of the Curvy plain, between the Karun River and the Ram Hormoz Plain. All samples dated from the Vth millennium BC and cover three periods: 5000–4700 BC (Late Middle Susiana), 4700–4200 BC (Late Susiana 1) and 4200–3900 BC (Late Susiana 2). The bitumens were studied using the techniques of petroleum geochemistry and were compared both to the unaltered crude oils produced from the main oil fields in the area and to the famous Mamatain oil seeps. All samples are very rich in bitumen (average 46 wt%) which has been biodegraded and oxidized. Despite these alteration phenomena, δ13C of asphaltenes occur within a narrow range of less than 1‰ PDB. Biodegradation affected the steranes, terpanes, dibenzothiophenes and mono- and triaromatic steroids. Molecular characteristics of terpanes, especially the occurrence of 18α (H)-oleanane, suggest that the bitumen from Tall-e Abu Chizan is a mixture generated from Cretaceous Kazdhumi and Eocene Pabdeh petroleum source rocks. In that respect, bitumens from Tall-e Abu Chizan belong to the same oil family as oil from the Naft Safid field, which is in the vicinity of the archaeological site. In fact, the bitumen at Tall-e Abu Chizan likely originated from oil seepages at Naft Safid. These oil seeps have not yet been sampled or analysed.  相似文献   

8.
The Bulonggoer paleo-oil reservoir (BPR) on the northwest Junggar Basin is the first Devonian paleo-oil reservoir discovered in North Xinjiang, China. Solid bitumens occur within sandstone pores and as veins filling fractures. Samples of both types were analyzed using stable carbon isotope and reflectance measurements, as well as molecular biomarker parameters.The extremely positive δ13C values and biomarker indicators of depositional environment/lithology, such as pristane/phytane (Pr/Ph), C29/C30 hopane, diasteranes/regular steranes and dibenzothiophene/phenanthrene ratios, indicate a siliciclastic source for the BPR and their deposition in a highly reducing hypersaline environment. The presence of long chain n-alkanes and abundant tetracyclic diterpanes, C20–C21 tricyclic terpanes and perylene are indicators of higher plant organic matter input. Moreover, the bimodal distribution of C27 > C28 < C29 regular steranes and abundant methyltriaromatic steroids also support a contribution of microalgae as well as higher plants organic matter. The similar molecular composition and thermal maturity parameters indicate that the reservoir and veined solid bitumens were altered from a common paleo-petroleum, which originated from peak oil window matured source rocks.All solid bitumens from the BPR are characterized by relatively low bitumen reflectance values (Rb% < 0.7), suggesting that they were generated from low temperature processes rather than oil thermal cracking. Comparatively, the Rb% values for veined bitumens are higher than reservoir bitumens, indicating that the veined bitumens occurred earlier and experienced higher thermal conditions.  相似文献   

9.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

10.
Deepwater oil and gas exploration has become a global hotspot in recent years and the study of the deep waters of marginal seas is an important frontier research area.The South China Sea(SCS)is a typical marginal sea that includes Paleo SCS and New SCS tectonic cycles.The latter includes continental marginal rifting,intercontinental oceanic expansion and oceanic shrinking,which controlled the evolution of basins,and the generation,migration and accumulation of hydrocarbons in the deepwater basins on the continental margin of the northern SCS.In the Paleogene,the basins rifted along the margin of the continent and were filled mainly with sediments in marine-continental transitional environments.In the Neogene–Quaternary,due to thermal subsidence,neritic-abyssal facies sediments from the passive continental margin of the SCS mainly filled the basins.The source rocks include mainly Oligocene coal-bearing deltaic and marine mudstones,which were heated by multiple events with high geothermal temperature and terrestrial heat flow,resulting in the generation of gas and oil.The faults,diapirs and sandstones controlled the migration of hydrocarbons that accumulated principally in a large canyon channel,a continental deepwater fan,and a shelf-margin delta.  相似文献   

11.
Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field, the largest gas field so far found in marine carbonates in China, confirming that the Puguang gas field evolved from a paleo-oil reservoir. The fluid conduit system at the time of intensive oil accumulation in the field was reconstructed, and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters. The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field. The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen, and the focusing of oils originated from a large area of the generative kitchen, were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved. The Puguang gas field had experienced a three-stage evolution. The post-accumulation processes, especially the organic-inorganic interaction in the hydrocarbon-water-rock system, had not only profoundly altered the composition and characteristics of the petroleum fluids, but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.  相似文献   

12.
扬马延海脊位于北大西洋的北极圈附近,东格陵兰板块和挪威板块之间,冰岛东北方向。北极地区地域辽阔,油气资源丰富,但是恶劣的环境一直制约油气的勘探进展。在扬马延海脊的沉积演化过程中,扬马延海脊在第三纪前有着和东格陵兰陆架、挪威陆架相似的沉积序列,其构造演化经历了二叠纪陆内裂谷、三叠纪—侏罗纪同裂谷和微陆块漂移、白垩纪至今热沉降和被动陆缘等3个阶段。结合前人研究成果,对搜集的东格陵兰陆架、挪威陆架的油气地质资料分析,认为扬马延海脊可划分为扬马延盆地、扬马延西部构造带、扬马延中部凸起带、扬马延海槽、扬马延东部斜坡、扬马延南部复杂构造带6个构造单元,在其上发育着2套油气系统。同时扬马延海脊发育有伸展构造圈闭、地垒断块圈闭、构造圈闭和地层圈闭,这些圈闭为油气的赋存提供了良好的环境,也有利于划分有利油气勘探区带。研究结果可为进一步分析扬马延海脊构造特征等方面提供基础信息,同时对我国参与研究开发北极油气资源具有重大意义。  相似文献   

13.
钻探资料证实南海东北部发育海相中生界。潮汕坳陷是南海东北部最大残留坳陷,面积达3. 7×10 4 km2,经历了晚三叠世张裂初期、侏罗纪坳陷期、晚侏罗世末期第一次构造反转期、早白垩世再沉降期、晚白垩世晚期第二次构造反转期及新近纪区域热沉降期等6个构造演化阶段,充填了滨浅海、半深海等海相沉积及河湖相等陆相沉积。潮汕坳陷侏罗系半封闭海湾型烃源岩有机质丰度相对较高,泥岩地层厚,生烃能力强,油气地质条件好,具有较好的油气勘探前景。  相似文献   

14.
Glauconitic minerals constitute a family ranging from green smectite to a 10Ådioctahedral mica (glauconite). Chamositic minerals include a 7Åtrioctahedral serpentine (berthierine) and a 14Åtrioctahedral chlorite (chamosite). These green iron-rich, neoformed or transformed clay minerals are most commonly concentrated in sand-size granules.Recent berthierine and Recent and ancient glauconitic minerals occur mainly in structureless peloids, most of which are believed to have been fecal pellets. In contrast, most of the ancient chamositic minerals are in multi-coated ooids generally assumed to have been made by gentle rolling on the sea floor.Glauconitic and chamositic granules accumulated most commonly in marine shelf environments during episodes of reduced influx of sediment. In modern deposits chamositic peloids predominate on the inner shelf, whereas glauconitic peloids are most abundant on the middle and outer shelf. In general, ancient glauconitic and chamositic deposits had a rather similar environmental distribution; in detail, however, they reflect more varied and overlapping marine habitats.Glauconitic greensands and chamositic ironstones commonly occur above a coarsening- or shoaling-upward facies sequence. Many of them are cross-bedded and burrowed, and some are interbedded with a ferruginized or phosphatized hardground. Although differing in detail, their temporal distributions throughout Phanerozoic time were rather similar. Both attained a maximum when cratonic blocks were widely dispersed and sea level was high in Early Paleozoic and Late Mesozoic time. In addition, recurring development of chamositic ooids commonly coincided with repeated regional transgressions.This review of current information and differing interpretations leads to significant questions that are essential subjects for future research. Moreover, some of these relate to unsolved problems of phosphorite genesis.  相似文献   

15.
Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System   总被引:6,自引:2,他引:6  
Abidin  Hasanuddin Z.  Djaja  Rochman  Darmawan  Dudy  Hadi  Samsul  Akbar  Arifin  Rajiyowiryono  H.  Sudibyo  Y.  Meilano  I.  Kasuma  M. A.  Kahar  J.  Subarya  Cecep 《Natural Hazards》2001,23(2-3):365-387
Jakarta is the capital city of Indonesia with a population of about 10 million people, inhabiting an area of about 25 × 25 km. It has been reported for sometime that locations in Jakarta are subsiding at different rates. Up to the present, there has been no comprehensive information about the characteristics and pattern of land subsidence in the Jakarta area. Usually land subsidence in Jakarta is measured using extensometers and ground water level observations, or estimated using geological and hydrological parameters. To give a better picture about land subsidence, geodetic-based monitoring systems utilizing leveling and GPS surveys have also been implemented.The land subsidence characteristics of Jakarta and its surrounding area areinvestigated using data from three repeated leveling surveys performed in1982, 1991, and 1997, and two repeated GPS surveys conducted in 1997and 1999. Leveling surveys detected subsidence up to about 80 cm duringthe period of 1982–1991, and up to about 160 cm during the 1991–1997period; while GPS surveys observed subsidence up to about 20 cm duringthe period of 1997–1999. Comparison with the hydrological data shows thatland subsidence in Jakarta is strongly related to excessive groundwater extraction.  相似文献   

16.
The Western Black Sea basin opened during Cretaceous times by back-arc rifting in association with a north dipping subduction at the rear of the Cretaceous–Early Tertiary Pontide volcanic arc. The sedimentary wedge developed on the shelf of the Romanian Black Sea sector reflects a complex interplay between large scale rifting, uplift of the orogenic flanks, large-scale post-rift subsidence and sea level changes. We examine the detailed structural configuration of this sector for a regional correlation with the adjacent offshore in Ukraine and Bulgaria. The evolution of the western Black Sea basin started in the Albian–Cenomanian times, when two extensional phases with significantly different directions (N–S and subsequently E–W) lead to the formation of a complex interplay between isolated blocks organised in horsts and grabens generally deepening eastwards. Superposition of normal faults footwall blocks from the two extensional episodes generated a deeply subsided area with enhanced accommodation space, i.e., the Histria Depression, and, consequently, recorded a larger thickness of Paleogene sediments in the post-rift stage. (Re)activation of faults and associated folding reflects repeated inversion during the Late Cretaceous–Oligocene times, associated with subsequent periods of non-deposition and/or erosion during moments of basin fill exposure. These periods of inversion recorded in the Black Sea are controlled by coeval orogenic deformations taking place in the Balkans, Pontides and the Crimean thrust belt. Sea level fluctuations during the Neogene and late Alpine tectonics in the neighbouring orogens caused massive sedimentation followed by sediment starvation and/or significant erosion. Large thicknesses of sediments accumulated during the Pontian, presumably associated with an extensional episode deepening the distal parts of the basin and with differential compaction structures. The interpretation of a high-quality seismic dataset combined with published data allowed the correlation of major structural units and lineaments defined onshore towards the Carpathians with the ones deeply buried below the western Black Sea basin sediments. Unit correlations are furthermore used to derive an integrated tectonic image of the western Black Sea area.  相似文献   

17.
Sedimentary history of the Tethyan basin in the Tibetan Himalayas   总被引:14,自引:0,他引:14  
After an epicontinental phase, the sedimentary rocks in the Tibetan Himalayas document a complete Wilson cycle of the Neo-Tethyan (Tethys Ill) evolution between the Gondwana supercontinent and its northward drifting margin (Lhasa block) from the Late Permian to the Eocene.During the Triassic rift stage, the basin was filled with a huge, clastic-dominated sediment wedge with up to > 5 000 m of flysch in the northern zone. Widespread deltaic clastics and shallow-water carbonates of late Norian to earliest Jurassic age in the southern zone mark, in conjunction with decreasing tectonic subsidence, the transition to the drift stage.Some 4 500 m of Jurassic and Early Cretaceous shallow-water carbonates and siliciclastics accumulated on the Tethyan Indian passive margin. Deepening-upward sequences with condensed beds at their tops alternate with repeated progradational packages of shelf sediments. Extensive abyssal sediments with basaltic volcanics in the northern deep-water zone reflect continued ocean spreading and thermal subsidence. Paleomagnetic data, gained separately for the northern Indian plate and the Lhasa block, indicate that the Neo-Tethys reached its maximum width about 110 Ma ago with a spreading rate of 4.8 cm/year, before it commenced to close again.During the remnant basin stage in the Late Cretaceous and Paleogene, a shallowing-upward megasequence, capped by a carbonate platform, developed in the southern inner shelf realm. In the northern slope/basin plain zone, turbidites and chaotic sediments, derived from both the acretionary wedge and the steepening slope of the passive margin, accumulated. The depositional center of the remnant basin shifted southward as a result of flexural subsidence and southward overthrusting.The sediments from the Triassic to the Paleogene are tentatively subdivided into five mega-sequences, which are controlled mainly by regional tectonics. Climatic influence (e.g., carbonate deposition), due to northward plate motion, is partially subdued by terrigenous input and/or increased water depth. During the Oligocene and Miocene, crustal shortening led to rapid uplift and the deposition of fluvial molasse in limited basins.  相似文献   

18.
The South Faizuly manganese deposit hosted in cherty rocks of the Magnitogorsk paleovolcanic belt has been studied. The geology, mineralogy, and chemistry of ores and host silicites (jasperites, jaspers, and cherty siltstones) are characterized. The deposit was formed in the following four consecutive stages: (1) sedimentation and diagenesis of ore-bearing sediments in the Middle Devonian, (2) metagenesis of Mn-bearing rocks in the Middle Devonian-Early Carboniferous, (3) hydrothermal-metasomatic stringer ore mineralization during tectonic deformation of volcanosedimentary rocks in the Middle Carboniferous-Permian, and (4) supergene alteration and partial denudation of the deposit in the Mesozoic-Quaternary. Models of Mn-bearing rock deposition in the proximal and distal zones of the hydrothermal solution discharge area are considered.Translated from Litologiya i Poleznye Iskopaemye, No. 1, 2005, pp. 35–55.Original Russian Text Copyright 2005 by Brusnitsyn, Zhukov.  相似文献   

19.
Middle Ordovician sediments of the St. Lawrence Lowland, eastern Canada, and its northeastward extension to St-Siméon, are subdivided into the numerous formations of the Chazy, Black River and Trenton Groups. Details of each formation and interpretation of environments of deposition are presented and a coherent model for the development of the upper Middle Ordovician Trenton Group throughout the region is presented. In the southwest, around Montreal, a complete and continuous Middle Ordovician sequence is present and Trenton Group sediments overlie well-developed tidal flat and lagoonal (Black River Group) and mixed shallow subtidal (Chazy Group) sediments. This sequence was deposited on a slowly subsiding, essentially flat, broad shelf environment. Northeastward from Montreal, toward the Montmorency Promontory of the Quebec City area, basal Middle Ordovician sediments become younger and the extent of the shelf area narrowed significantly. The latter resulted in skeletal shoal sediments (lower Trenton Group) developing closer to shore and concomitant less well-developed clastic-rich lagoonal sediments (Black River Group and basal Trenton Group). At Montmorency Promontory the shoal sediments (basal Trenton Group) accumulated along an irregular and rugged coastline. Northeast of the Promontory a steep onshore to offshore profile and rapidly deposited basal inshore clastics (Black River Group) precluded the deposition of skeletal shoals and rapid submergence promoted the early development of deeper shelf (middle and upper Trenton Group) and slope and basin (top Trenton Group, Saint Irénée Formation) sediments. In contrast, corresponding offshore sediments (middle and upper Trenton Group) in the southwest reflect a lower depositional gradient and more gradual subsidence. These patterns of deposition were determined by the interaction of the changing nature of the Ordovician coastline southwest, at, and northeast of the Montmorency Promontory and the variable subsidence rates influenced by the eastward evolving Taconic Orogen.  相似文献   

20.
Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field,the largest gas field SO far found in marine carbonates in China,confirming that the Puguang gas field evolved from a paleo-oil reservoir.The fluid conduit system at the time of intensive oil accumulation in the field Was reconstructed,and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters.The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field.The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen,and the focusing of oils originated from a large area of the generative kitchen,were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved.The Puguang gas field had experienced a three-stage evolution.The post-accumulation processes,especially the organic-inorganic interaction in the hydrocarbon-water-rock system,had not only profoundly altered the composition and characteristics of the petroleum fluids,but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号