首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一次连续性大暴雨成因及雷达回波特征分析   总被引:2,自引:0,他引:2  
黄东兴  黄美金 《气象》2000,26(7):50-55
对1998年6月中旬发生在福建省北部地区的连续性大暴雨过程环流特征、影响系统、特殊地形条件作用,中尺度回波系统活动及小尺度强核回波对降水强度的贡献进行了综合分析,力求从雷达回波演变特征找出规律,以提高其短时预报能力。  相似文献   

2.
3.
4.
一次大暴雨过程的中尺度特征分析   总被引:2,自引:4,他引:2  
利用天气图、雨量、GMS IR卫星云图、雷达回波、物理量等资料,对2003年5月16~17日福建省中部、南部地区出现的一次大暴雨过程的中尺度特征作了详细分析.结果表明,每一次暴雨过程是由几个中尺度暴雨组成,而每一个中尺度暴雨又是由一个或多个中尺度对流云团影响造成的;大尺度水汽、动力条件是暴雨产生的必要条件,中尺度暴雨常出现在水汽通量辐合中心和强上升运动中心附近或其移动方向一侧的等值线密集区;40 dBz以上的强回波预示当地将出现一次强降水过程;这次过程回波发展高度不高,特别是回波强中心高度不高,没有出现雷雨大风和冰雹天气,强对流只以打雷和强降水表现;中尺度暴雨常出现在零径向速度附近及其折角处.  相似文献   

5.
利用合肥多普勒天气雷达回波和各种常规资料,对2010年梅雨期皖江一次大暴雨天气过程的雷达回波进行分析,探讨短时大暴雨的回波特征。结果表明:有利的大尺度环流,充足的水汽条件和较强的上升运动是产生强降水有利的天气背景。雷达资料分析发现形成此次皖江暴雨的源地位于大别山区,强降水是由局地发展的对流回波加强合并产生的,回波的发生和发展加强常常与风场的局地强辐合区(逆风区)相联系,雨带在中低空切变线上合并加强,强降水区域尺度较大,单体回波移向和雨带走向一致,回波移动缓慢或呈准静止状态,累积雨量大,易于形成暴雨。  相似文献   

6.
对长春地区2008年7月8-9日局地大暴雨过程的环流形势及新一代天气雷达回波演变特征分析表明:副热带高压边缘的水汽特别充沛,高低空风存在垂直切变,在地面辐合切变和低空切变线触发下对流发展形成大暴雨。强降水超级单体回波强度达50dBz,降雨回波长时间持续少动是产生大暴雨的主要原因,暴雨回波成熟时在强回波中存在较强的辐合,大暴雨落区出现在丁字形回波的一竖位置上,暴雨云团中大于40dBz的强回波高度可达9km,回波顶高超过12km,垂直液态水含量达3.0,与此对应的速度图上有逆风区、小气旋、辐合区等强降水特征出现。  相似文献   

7.
杨秀庄  李鹏  汪超 《贵州气象》2010,34(6):10-13
利用新一代多普勒天气雷达资料,分析贵州2008年2次典型的大暴雨过程。分析表明,这2次大暴雨过程呈现雨量大、雨强强,降水成片等特点,其回波演变特征出现了低质心回波、逆风区、低空急流等一般暴雨的雷达回波演变特征。降水直接影响系统为中尺度对流系统(MCS),在雷达回波图上表现为对流型降水和混合云降水,混合云降水贡献相对较大。  相似文献   

8.
通过对2008年5月3日发生在驻马店市正阳县的大暴雨过程中的环流形势、稳定度及多普勒雷达产品的分析发现:驻马店地区K指数=38 ℃、SI=-2.0 ℃、Δθse=3.8 ℃,大气层结极不稳定,为大暴雨的产生提供了充足的不稳定能量;500 hPa低槽和700、850 hPa切变线及地面冷空气入侵,触发了不稳定能量的释放,产生了大暴雨.利用多普勒雷达回波产品,可确定雨区及其移动方向;利用径向速度资料,可确定辐合带;利用风廓线资料,可确定温度平流、垂直风切变及冷空气入侵.  相似文献   

9.
利用MICAPS资料、NCEP1°×1°再分析资料以及榆林多普勒天气雷达产品,对2017年7月25—26日榆林市区域性暴雨、局地大暴雨成因进行分析。结果表明:500hPa短波槽、700hPa低空西南急流和850hPa中尺度切变线是本次过程的主要影响系统;700hPa西南急流为特大暴雨的主要水汽输送系统,同时为强降水的维持提供了不稳定能量。雷达反射率演变特征表明该次过程有两个强降水时段,第一阶段为位于榆林北部的带状回波和南部的孤立雷暴单体造成的局地强降水,第二阶段为回波前部不断生成并发展的多个强回波中心给榆林南部带来的大范围短时暴雨。径向速度图上,在第二阶段对称的正负速度中心表明700hPa存在明显的西南低空急流;过程期间低空急流与强降水的发生具有较高的相关性,持续出现的中心风速为15 m/s以上的西南急流对短时大暴雨的产生有重要作用,低空急流的强度直接影响着强降水强度,急流风速增幅越大,强降水雨强增幅越大。  相似文献   

10.
利用烟台新一代天气雷达资料,结合自动气象站和常规观测资料,分析了2004年5月16日山东半岛西部强对流天气背景和雷达回波特征。结果表明:此次强对流天气是由高空低涡和地面气旋造成的,在雷达径向速度图上,有中气旋特征,并与地面风场相对应。  相似文献   

11.
利用营口多普勒雷达资料,对2010年8月19日出现在阜新南部的暴雨过程进行分析。结果表明:义县生成的强回波单体在东北上的过程中不断发展加强,最终形成从义县到彰武哈尔套的强回波带东移是造成此次暴雨到大暴雨过程的主要原因。同时通过对其回波强度、影响时间以及实况雨量的跟踪、对比和分析,得出小时降水量与回波强度关系:回波强度在35—45 dBz之间,小时降水量为25 mm;回波强度在45—50 dBz之间,小时降水量为40 mm;回波强度超过50 dBz,虽回波影响时间较短,不超过3个体扫,但小时降水量仍可达50 mm。低空急流的出现和加强为强降水的发展维持,提供了充足的水汽及不稳定能量,并促使雨带中的中尺度系统的生成和发展,是造成短时暴雨出现的关键因子。  相似文献   

12.
多普勒雷达回波在辽宁一次暴雨过程中的应用分析   总被引:4,自引:8,他引:4       下载免费PDF全文
选取2004年8月27~29日发生在辽宁的一次区域性暴雨过程个例,应用常规天气图资料并结合多普勒雷达回波资料进行诊断分析,确立了辽宁区域性暴雨模式,并揭示了多普勒雷达的基本反射率、基本径向速度等产品在短时强对流性天气预报中的指导意义。  相似文献   

13.
基于1960—2013年湖南88个台站逐日降水数据,采取线性趋势分析等方法分析了近54 a湖南区域暴雨的时空分布特征。从时间变化上看,近54 a湖南区域暴雨日以6月208 d为最多,1月0 d为最少;夏季、春季、秋季及冬季区域暴雨日数占总日数的百分比依次为60%、29%、10%及1%。暴雨日数、暴雨强度均值突变点分别为1994年、1995年,暴雨初日的均值突变点为1983、1994年,暴雨终日无均值突变;暴雨日数与暴雨强度(暴雨发生终日)总体上呈上升(后延)趋势。基于突变点分段线性趋势分析表明,仅暴雨日数在1994—2013年及暴雨强度在1960—1994年期间呈显著下降趋势。从空间分布上看,区域暴雨强度及其与非区域暴雨强度的差值、区域暴雨持续2日或以上的暴雨强度及其与单日暴雨强度的差值的大值区主要位于湘西北及湘东南,小值区主要位于湘西南-湘东北的带状区域;全部站点的区域暴雨强度均大于非区域暴雨强度,89%的台站持续2日或以上的区域暴雨强度大于单日区域暴雨强度。区域暴雨、总体暴雨的台站暴雨最长持续日数分别为1~4 d、2~4 d,均集中在2~3 d且其站数占总站数的百分比分别为97.7%、96.6%。  相似文献   

14.
利用沈阳CINRAD/SA多普勒天气雷达观测资料及加密自动站资料等,对2009年7月11日发生在沈阳西部的中尺度大暴雨天气过程进行分析。结果表明:雷达1.5°仰角PPI图上有逆风区存在,逆风区出现的时间要比强降水出现的时间早10 min以上,强降水区与逆风区、强回波区、VIL值的大值区有较好的对应关系,逆风区的出现对强对流天气的预报预警有指示作用。  相似文献   

15.
沈阳一次局地大暴雨过程中逆风区的回波演变   总被引:2,自引:0,他引:2       下载免费PDF全文
利用沈阳CINRAD/SA多普勒天气雷达观测资料及加密自动站资料等,对2009年7月11日发生在沈阳西部的中尺度大暴雨天气过程进行分析。结果表明: 雷达1.5°仰角PPI图上有逆风区存在,逆风区出现的时间要比强降水出现的时间早10 min以上,强降水区与逆风区、强回波区、VIL值的大值区有很好的对应关系,逆风区的出现对强对流天气的预报预警有指示作用。  相似文献   

16.
“2011.7.14”沈阳短时强降水多普勒雷达回波特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为了更好的预报、预警超级风暴单体引起的短时强降水,利用沈阳棋盘山多普勒雷达、营口多普勒雷达和自动站及地面、高空等气象资料,对2011年7月14日沈阳强降水超级单体风暴进行分析。结果表明:地面辐合线和切变线提前于降水2 h产生,而且地面辐合线和切变线的位置与风暴的生成位置重合。强对流风暴具有超级单体风暴特征,风暴出现弓形回波;速度图上存在“v”型入流缺口,相应速度场上出现中气旋,营口雷达基本反射率最大值达到61 dBz,反射率因子垂直剖面出现弱回波区和回波悬垂。当雷达回波发现中气旋,并预计此中气旋能维持1 h左右或者雷达回波发现弓形回波,沈阳棋盘山雷达基本反射率强度超过45 dBz时,可发布短时暴雨或雷雨大风等强对流气象灾害预警。  相似文献   

17.
重庆地区强对流天气雷达回波统计特征   总被引:3,自引:0,他引:3       下载免费PDF全文
江玉华  丁明星  陈群  刘婷婷 《气象》2005,31(3):36-40
对过去22年(1982~2003)间重庆市发生的中尺度强对流天气雷达资料进行分类统计,研究中尺度强对流天气过程及其天气雷达回波特征,寻找重庆市中尺度强对流天气的运动规律。建立天气雷达回波资料库,将中尺度强对流天气过程雷达回波资料,按天气类型分类研究,结果表明:①重庆市中尺度强对流系统在时空分布上具有明显的不均匀性;②涡旋状回波是暴雨的显著特征;③冰雹回波以块状为主;④强雷雨大风回波的特征具有带状或弓型。  相似文献   

18.
广州地区7·17大暴雨及强对流的多普勒雷达资料分析   总被引:3,自引:2,他引:3  
本文分析了 2 0 0 0年 7月 17日在热带扰动和季风槽的共同作用下 ,发生在广州地区的大暴雨和局地雷雨大风天气过程 ,应用香港多普勒雷达回波和径向风场资料 ,研究了热带扰动登陆前后 ,中小尺度天气系统与强对流回波演变特征之间的关系  相似文献   

19.
俞小鼎 《暴雨灾害》2013,32(3):202-209
对短时强降水主观临近预报的主要思路和方法进行综述。(1) 短时强降水(flash heavy rain)是指1 h 雨量在20 mm或3 h 雨量在50 mm 以上的降水事件。短时强降水事件的识别主要由雨强和降水持续时间两个要素确定。(2) 雨强临近估计的主要根据是天气雷达反射率因子和雨强之间的经验关系,即Z-R 关系。对流性雨强的估计,最简单易行的方法是将对流性降水分为大陆强对流型和热带海洋型两种类型,分别采用不同的Z-R 关系。雨强估计的主要误差来源包括不适当的Z-R 关系、地形对雷达波束阻挡、冰雹“污染”、强降水和冰雹对雷达波束的衰减、硬件定标偏差、被大雨淋湿的天线罩导致的衰减等。(3) 判断是否出现强降水的另一要素是降水的持续时间。沿着回波移动方向高降水率的区域尺度越大,降水系统移动越慢,则持续时间越长。对于导致强降水的β中尺度对流系统,其雷达回波的移动矢量是平流矢量和传播矢量的合成。如果平均风方向(平流方向)与回波传播方向交角大于90°,称为后向传播,此时回波移速小于平均风速,移动较慢,易导致强降水。在有利于强降水的环境条件下,含有中气旋或更大尺度涡旋的β中尺度对流系统会明显增大强降水的可能。  相似文献   

20.
RIEMS‘ ability to simulate extreme monsoon rainfall is examined using the 18-month (April 1997 September 1998) integrated results. Model-simulated heavy precipitation over the Yangtze River valley during 11-30 June 1998 is compared with the observation, and the relationships between this heavy rainfall process and the large-scale circulations, such as the westerly jet, low-level jet, and water vapor transport,are analyzed to further understand the mechanisms for simulating heavy monsoon rainfall. The analysis results show that (1) RIEMS can reproduce the pattern of heavy precipitation over the Yangtze River valley during 11-30 June 1998, but it is shifted northwestwards. (2) The simulated West Pacific Subtropical High (WPSH) that controls the East Asia Monsoon evolution is stronger than the observation and is extended westwards, which possibly leads to the north westward shift of the heavy rain belt. (3) The Westerly jet at 200 hPa and the Low-level jet at 850 hPa, both of which are related to the heavy monsoon rainfall,are reasonably reproduced by RIEMS during 11-30 June 1998~ although the intensities of the simulated Westerly/Low-level jets are strong and the location of the Westerly jet leans to the southeast,which may be the causes of RIEMS producing too much heavy rainfall in the north of the Yangtze River valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号