首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schenk  V.  Schenková  Z.  Kottnauer  P.  Guterch  B.  Labák  P. 《Natural Hazards》2000,21(2-3):331-345
The cross-bordering earthquake hazard mapfor three Central European countries, the CzechRepublic, Poland and Slovakia (CZ-PL-SK) in thesense of the Global Seismic Hazard AssessmentProgram (GSHAP) was elaborated both in terms ofmacroseismic intensities and in terms of peak groundaccelerations (PGA). A new earthquake parametriccatalogue for CZ-PL-SK (Schenková et al., 1999)allows the source regions to be delineated withrespect to tectonic structures. Regions for Austriaand Germany were taken from the D-A-CH area withsome modifications in the border zone with the CzechRepublic and Poland. Regions of other surroundingcountries were defined with respect to nationalearthquake catalogues and geologico-geophysical dataof Central European countries. For each sourceregion earthquake data were normalised to obtain areliable annual recurrence graph and the maximumexpected earthquakes. Attenuation laws were definedto allow more advanced earthquake hazard maps to becalculated by the standard probabilistic McGuire's(1976) approach. The obtained GSHAP hazard maps forthe CZ-PL-SK area were calculated for the returnperiod of 475 years. Besides a comparison with thehazard values for the D-A-CH area (Grünthal etal., 1995, 1996; Grünthal, 1997), the map wasalso compared with the effective ground accelerationmap for Austria (Lenhardt, 1996) and in both cases avery good coincidence was found.Author for correspondence  相似文献   

2.
Mäntyniemi  P.  Mârza  V.  Kijko  A.  Retief  P. 《Natural Hazards》2003,29(3):371-385
In this paper we apply a probabilistic methodology to map specific seismic hazard induced by the Vrancea Seismogenic Zone, which represents the uttermost earthquake danger to Romania as well as its surroundings. The procedure is especially suitable for the estimation of seismic hazard at an individual site, and seismic hazard maps can be created by applying it repeatedly to grid points covering larger areas. It allows the use of earthquake catalogues with incompletely reported historical and complete instrumental parts. When applying themethodology, special attention was given to the effect of hypocentral depth and the variation of attenuation according to azimuth. Hazard maps specifying a 10% chance of exceedance of the given peak ground acceleration value for an exposure time of 50 years were prepared for three different characteristic depths of earthquakes in the Vrancea area. These maps represent a new realistic contribution to the mitigation of the earthquake risk caused by the Vrancea Seismogenic Zone in terms of: (1) input data (consistent, reliable, and the most complete earthquake catalogue), (2) appropriate and specific attenuation relationships (considering both azimuthal and depth effects); and (3) a new and versatile methodology.  相似文献   

3.
4.
Within the framework of a study of the seismicity of the Aniene Valley (Central Italy), we analysed the medieval earthquakes of Subiaco (1216, 1227, 1299), the largest events reported for the area. Our main goal was to investigate some doubtful events reported in earthquake catalogues and, as such, currently utilised for seismic hazard estimates. A careful screening of the oldest available sources and their filiation pattern up to the present pointed out the uncertainty on the date and nature of these phenomena. A multidisciplinary approach based on the joint analysis of archaeological, geomorphologic and historical evidence allowed us to propose new interpretations concerning these events and their significance for the assessment of seismic hazard in the Aniene Valley. The main conclusion is that the dates of the 1216 and 1227 events are fairly unsupported. In particular, the 1216 earthquake could be dated back to between AD 1159 and 1181.  相似文献   

5.
Magnitude conversion problem for the Turkish earthquake data   总被引:1,自引:0,他引:1  
Earthquake catalogues which form the main input in seismic hazard analysis generally report earthquake magnitudes in different scales. Magnitudes reported in different scales have to be converted to a common scale while compiling a seismic data base to be utilized in seismic hazard analysis. This study aims at developing empirical relationships to convert earthquake magnitudes reported in different scales, namely, surface wave magnitude, M S, local magnitude, M L, body wave magnitude, m b and duration magnitude, M d, to the moment magnitude (M w). For this purpose, an earthquake data catalogue is compiled from domestic and international data bases for the earthquakes occurred in Turkey. The earthquake reporting differences of various data sources are assessed. Conversion relationships are established between the same earthquake magnitude scale of different data sources and different earthquake magnitude scales. Appropriate statistical methods are employed iteratively, considering the random errors both in the independent and dependent variables. The results are found to be sensitive to the choice of the analysis methods.  相似文献   

6.
A general overview of some of the problems involved in earthquake catalogue handling is given as part of the works carried out into the ESC/SC8-TERESA project related with the seismic hazard assessment in two selected test areas: Sannio-Matese in Italy and the northern Rhine region (BGN). Furthermore, the necessary input data to be used in the calculation of seismic hazard has been obtained, including earthquake source zones and their seismic hazard parameters.The importance is pointed out of detailed analysis of seismic catalogues, mainly in relation to the use of aftershock information, the historical records of the region, and the possible temporal and spatial variation of seismicity, which could have an important influence on short-term hazard assessment.  相似文献   

7.
Many moderate events reported by Italian earthquake catalogues (either historical or recent) are listed with an epicentral intensity derived from intensitymagnitude relationships or evaluated based on preliminary sources. Contradictions may arise among different catalogues when the effects of a given earthquake are not assessed through a specific macroseismic study as each catalogue generally uses its own criteria for evaluating the intensity. In this paper we present the case of the June 19 1975 earthquake, a ML = 5.1 (ING seismological bulletin) event that occurred in the Gargano area (southern Italy). The intensity reported by the ING catalogue is VIII MCS (estimated from magnitude), that reported by the NT4.1 catalogue is VI MCS, while the PFG catalogue does not report an intensity. The case of this event is well representative of a period during which macroseismic studies were not undertaken systematically in Italy. In this paper we reassess the macroseismic intensity of this event using procedures implemented and routinely used at ING.  相似文献   

8.
Seismic Hazard and Loss Estimation for Central America   总被引:2,自引:2,他引:2  
Yong  Chen  Ling  Chen  Güendel  Federico  Kulhánek  Ota  Juan  Li 《Natural Hazards》2002,25(2):161-175
A new methodology of seismic hazard and loss estimation has been proposed by Chen et al. (Chen et al., 1998; Chan et al., 1998) for the study of global seismic risk. Due to its high adaptability for regions of different features and scales, the methodology was applied to Central America. Seismic hazard maps in terms of both macro-seismic intensity and peak ground acceleration (PGA) at 10% probability of exceedance in 50 years are provided. The maps are all based on the global instrumental as well as historical seismic catalogs and available attenuation relations. Employing the population-weighted gross domestic product (GDP) data, the expected earthquake loss in 50 years for Central America is also estimated at a 5' latitude × 5' longitude resolution. Besides the seismic risk index, a measure of the relative loss or risk degree is calculated for each individual country within the study area. The risk index may provide a useful tool to help allocations of limited mitigation resources and efforts for the purpose of reduction of seismic disasters. For expected heavy loss locations, such as the Central American capital cities, earthquake scenario analysis is helpful in providing a quick overview of loss distribution assuming a major event occurs there. Examples of scenario analysis are given for San Jose, capital of Costa Rica, and Panama City, capital of Panama, respectively.  相似文献   

9.
The Bayesian extreme-value distribution of earthquake occurrences has been used to estimate the seismic hazard in 12 seismogenic zones of the North-East Indian peninsula. The Bayesian approach has been used very efficiently to combine the prior information on seismicity obtained from geological data with historical observations in many seismogenic zones of the world. The basic parameters to obtain the prior estimate of seismicity are the seismic moment, slip rate, earthquake recurrence rate and magnitude. These estimates are then updated in terms of Bayes’ theorem and historical evaluations of seismicity associated with each zone. From the Bayesian analysis of extreme earthquake occurrences for North-East Indian peninsula, it is found that for T = 5 years, the probability of occurrences of magnitude (M w = 5.0–5.5) is greater than 0.9 for all zones. For M w = 6.0, four zones namely Z1 (Central Himalayas), Z5 (Indo-Burma border), Z7 (Burmese arc) and Z8 (Burma region) exhibit high probabilities. Lower probability is shown by some zones namely␣Z4, Z12, and rest of the zones Z2, Z3, Z6, Z9, Z10 and Z11 show moderate probabilities.  相似文献   

10.
There is no single method available for estimating the seismic risk in a given area, and as a result most studies are based on some statistical model. If we denote by Z the random variable that measures the maximum magnitude of earthquakes per unit time, the seismic risk of a value m is the probability that this value will be exceeded in the next time units, that is, R(m)=P(Z>m). Several approximations can be made by adjusting different theoretical distributions to the function R, assuming different distributions for the magnitude of earthquakes. A related method used to treat this problem is to consider the difference between the times of occurrence of consecutive earthquakes, or inter-event times. The hazard function, or failure rate function, of this variable measures the instantaneous risk of occurrence of a new earthquake, supposing that the last earthquake happened at time 0. In this paper, we will consider the estimation of the variable that measures the inter-event time and apply nonparametric techniques; that is, we do not consider any theoretical distribution. Moreover, because the stochastic process associated with this variable can sometimes be non-stationary, we condition each time by the previous ones. We then work with a multidimensional estimation, and consider each multidimensional variable as a functional datum. Functional data analysis deals with data consisting of curves or multidimensional variables. Nonparametric estimation can be applied to functional data, to describe the behavior of seismic zones and their associated instantaneous risk. The applications of estimation techniques are shown by applying them to two different regions and data catalogues: California and southern Spain.  相似文献   

11.
On 25 December 1884, an earthquake of epicentral intensityI 0 = IX in the MSK scale caused great damage in a large area in the provinces of Granada and Málaga, in the south of Spain. The reports of the Spanish, Italian and French Commissions that studied the earthquake described ground phenomena in seven different sites which can be identified as soil liquefaction.By means of dynamic penetration tests carried out in the above sites, the corresponding soil profiles (based on SPT data and water table depth) were established, and the occurrence of liquefaction was proved in five out of seven of these sites. Also, the intensities at such locations and the magnitude of the earthquake were estimated.From the geotechnical data and the cyclic stress ratio induced by the earthquake, liquefaction conditions were confirmed in all the five sites which presumably liquefied. Then, possible values of the minimum ground surface accelerations necessary for the onset of liquefaction at each location were calculated. The results obtained were completed with data reported in six liquefaction case studies from Japan and the United States, from which design charts relating soil acceleration with normalized SPT values for different intensity levels were drawn.Finally, by using standard attenuation curves, the above data were translated into epicentral distances, and good agreement with the known epicentral area was found. As a result, a consistent approach for liquefaction hazard and source location problems has been developed. The proposed method combines in its formulation historical evidence and earthquake engineering techniques.  相似文献   

12.
《Earth》2006,74(3-4):127-196
Research on neotectonics and related seismicity has hitherto been mostly focused on active plate boundaries that are characterized by generally high levels of earthquake activity. Current seismic hazard estimates for intraplate domains are mainly based on probabilistic analyses of historical and instrumental earthquake catalogues. The accuracy of such hazard estimates is limited by the fact that available catalogues are restricted to a few hundred years, which, on geological time scales, is insignificant and not suitable for the assessment of tectonic processes controlling the observed earthquake activity. More reliable hazard prediction requires access to high quality data sets covering a geologically significant time span in order to obtain a better understanding of processes controlling on-going intraplate deformation.The Alpine Orogen and the intraplate sedimentary basins and rifts in its northern foreland are associated with a much higher level of neotectonic activity than hitherto assumed. Seismicity and stress indicator data, combined with geodetic and geomorphologic observations, demonstrate that deformation of the Northern Alpine foreland is still on-going and will continue in the future. This has major implications for the assessment of natural hazards and the environmental degradation potential of this densely populated area. We examine relationships between deeper lithospheric processes, neotectonics and surface processes in the northern Alpine Foreland, and their implications for tectonically induced topography.For the Environmental Tectonics Project (ENTEC), the Upper and Lower Rhine Graben (URG and LRG) and the Vienna Basin (VB) were selected as natural laboratories. The Vienna Basin developed during the middle Miocene as a sinistral pull-apart structure on top of the East Alpine nappe stack, whereas the Upper and Lower Rhine grabens are typical intracontinental rifts. The Upper Rhine Graben opened during its Late Eocene and Oligocene initial rifting phase by nearly orthogonal crustal extension, whereas its Neogene evolution was controlled by oblique extension. Seismic tomography suggests that during extension the mantle-lithosphere was partially decoupled from the upper crust at the level of the lower crust. However, whole lithospheric folding controlled the mid-Miocene to Pliocene uplift of the Vosges–Black Forest Arch, whereas thermal thinning of the mantle–lithosphere above a mantle plume contributed substantially to the past and present uplift of the Rhenish Massif. By contrast, oblique crustal extension, controlling the late Oligocene initial subsidence stage of the Lower Rhine Graben, gave way to orthogonal extension at the transition to the Neogene.The ENTEC Project integrated geological, geophysical, geomorphologic, geodetic and seismological data and developed dynamic models to quantify the societal impact of neotectonics in areas hosting major urban and industrial activity concentrations. The response of Europe's intraplate lithosphere to Late Neogene compressional stresses depends largely on its thermo-mechanical structure, which, in turn, controls vertical motions, topography evolution and related surface processes.  相似文献   

13.
Öncel  A. O.  Alptekin  Ö. 《Natural Hazards》1999,19(1):1-11
In order to investigate the effect of aftershocks on earthquake hazard estimation, earthquake hazard parameters (m, b and Mmax) have been estimated by the maximum likelihood method from the main shocks catalogue and the raw earthquakes catalogue for the North Anatolian Fault Zone (NAFZ). The main shocks catalogue has been compiled from the raw earthquake catalogue by eliminating the aftershocks using the window method. The raw earthquake catalogue consisted of instrumentally detected earthquakes between 1900 and 1992, and historical earthquakes that occurred between 1000–1900. For the events of the mainshock catalogue the Poisson process is valid and for the raw earthquake catalogue it does not fit. The paper demonstrates differences in the hazard outputs if on one hand the main catalogues and on the other hand the raw catalogue is used. The maximum likelihood method which allows the use of the mixed earthquake catalogue containing incomplete (historical) and complete (instrumental) earthquake data is used to determine the earthquake hazard parameters. The maximum regional magnitude (Mmax, the seismic activity rate (m), the mean return period (R) and the b value of the magnitude-frequency relation have been estimated for the 24°–31° E, 31°–41° E, 41°–45° E sections of the North Anatolian Fault Zone from the raw earthquake catalogue and the main shocks catalogue. Our results indicate that inclusion of aftershocks changes the b value and the seismic activity rate m depending on the proportion of aftershocks in a region while it does not significantly effect the value of the maximum regional magnitude since it is related to the maximum observed magnitude. These changes in the earthquake hazard parameters caused the return periods to be over- and underestimated for smaller and larger events, respectively.  相似文献   

14.
Generally the seismic hazard of an area of interest is considered independent of time. However, its seismic risk or vulnerability, respectively, increases with the population and developing state of economy of the area. Therefore, many areas of moderate seismic hazard gain increasing importance with respect to seismic hazard and risk analysis. However, these areas mostly have a weak earthquake database, i.e., they are characterised by relative low seismicity and uncertain information concerning historical earthquakes. In a case study for Eastern Thuringia (Germany), acting as example for similar places in the world, seismic hazard is estimated using the probabilistic approach. Because of the lack of earthquakes occurring in the recent past, mainly historical earthquakes have to be used. But for these the actual earthquake sources or active faults, needed for the analysis, are imprecisely known. Therefore, the earthquake locations are represented by areal sources, a common practice. The definition of these sources is performed carefully, because their geometrical shape and size (apart from the earthquake occurrence model) influence the results significantly. Using analysis tools such as density maps of earthquake epicentres, seismic strain and energy release support this. Oversizing of areal sources leads to underestimation of seismic hazard and should therefore be avoided. Large location errors of historical earthquakes on the other hand are represented by several alternative areal sources with final superimposition of the different results. In a very similar way information known from macroseismic observations interpreted as source rather than as site effects are taken into account in order to achieve a seismic hazard assessment as realistic as possible. In very local cases the meaning of source effects exceeds those of site effects very likely. The influence of attenuation parameter variations on the result of estimated local seismic hazard is relatively low. Generally, the results obtained by the seismic hazard assessment coincide well with macroseismic observations from the thoroughly investigated largest earthquake in the region.  相似文献   

15.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

16.
We conducted a study of the spatial distributions of seismicity and earthquake hazard parameters for Turkey and the adjacent areas, applying the maximum likelihood method. The procedure allows for the use of either historical or instrumental data, or even a combination of the two. By using this method, we can estimate the earthquake hazard parameters, which include the maximum regional magnitude max, the activity rate of seismic events and the well-known value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. These three parameters are determined simultaneously using an iterative scheme. The uncertainty in the determination of the magnitudes was also taken into consideration. The return periods (RP) of earthquakes with a magnitude M ≥ m are also evaluated. The whole examined area is divided into 24 seismic regions based on their seismotectonic regime. The homogeneity of the magnitudes is an essential factor in such studies. In order to achieve homogeneity of the magnitudes, formulas that convert any magnitude to an MS-surface scale are developed. New completeness cutoffs and their corresponding time intervals are also assessed for each of the 24 seismic regions. Each of the obtained parameters is distributed into its respective seismic region, allowing for an analysis of the localized seismicity parameters and a representation of their regional variation on a map. The earthquake hazard level is also calculated as a function of the form Θ = (max,RP6.0), and a relative hazard scale (defined as the index K) is defined for each seismic region. The investigated regions are then classified into five groups using these parameters. This classification is useful for theoretical and practical reasons and provides a picture of quantitative seismicity. An attempt is then made to relate these values to the local tectonics.  相似文献   

17.
历史强震对渭河中游群发大型滑坡的诱发效应反演   总被引:1,自引:0,他引:1  
以渭河中游地区为例,探索提出了开展历史地震对区域群发滑坡诱发效应反演研究的思路和方法。首先,基于汶川地震在渭河中游地区形成的高烈度异常和震害启示,通过区域活动构造和斜坡带断裂控滑分析,指出历史强震对区内群发大型滑坡的诱发效应不容忽视。然后,利用强震诱发滑坡的最远致灾震中距分析法,筛选出研究区周边300 km范围内需要重点考察其诱发效应的4次关键历史强震:公元前780年岐山MS7.0级地震、1654年天水南MS8.0级地震、1556年华县MS8.25级地震及1920年海原MS8.5级地震。随后,以岐山地震为例,具体阐述了基于Newmark位移模型的地震诱发滑坡位移及危险性反演评估方法;同时反演了其他3次历史强震诱发区内滑坡位移及危险性。最后,定量比较了反演历史强震诱发滑坡的位移与实际大型滑坡分布的空间匹配程度,结果显示天水南MS8.0级地震对渭河中游现存群发大型滑坡的诱发效应最强。  相似文献   

18.
The general modular Bayesian procedure is applied to provide a probabilistic tsunami hazard assessment (PTHA) for the Messina Strait Area (MSA), Italy. This is the first study in an Italian area where the potential tsunamigenic events caused by both submarine seismic sources (SSSs) and submarine mass failures (SMFs) are examined in a probabilistic assessment. The SSSs are localized on active faults in MSA as indicated by the instrumental data of the catalogue of the Italian seismicity; the SMFs are spatially identified using their propensity to failure in the Ionian and Tyrrhenian Seas on the basis of mean slope and mean depth, and using marine geology background knowledge. In both cases the associated probability of occurrence is provided. The run-ups were calculated at key sites that are main cities and/or important sites along the Eastern Sicily and the Southern Calabria coasts where tsunami events were recorded in the past. The posterior probability distribution combines the prior probability and the likelihood calculated in the MSA. The prior probability is based on the physical model of the tsunami process, and the likelihood is based on the historical data collected by the historical catalogues, background knowledge, and marine geological information. The posterior SSSs and SMFs tsunami probabilities are comparable and are combined to produce a final probability for a full PTHA in MSA.  相似文献   

19.
The western Peloponnese was repeatedly hit by major tsunami impacts during historical times as reported by historical accounts and recorded in earthquake and tsunami catalogues. Geological signatures of past tsunami impacts have also been found in many coastal geological archives. During the past years, abundant geomorphological and sedimentary evidence of repeated Holocene tsunami landfall was found between Cape Katakolo and the city of Kyparissia. Moreover, neotectonic studies revealed strong crust uplift along regional faults with amounts of uplift between 13 m and 30 m since the mid-Holocene. This study focuses on the potential of direct push in situ sensing techniques to detect tsunami sediments along the Gulf of Kyparissia. Direct push measurements were conducted on the landward shores of the Kaiafa Lagoon and the former Mouria Lagoon from which sedimentary and microfaunal evidence for tsunami landfall are already known. Direct push methods helped to decipher in situ high-resolution stratigraphic records of allochthonous sand sheets that are used to document different kinds of sedimentological and geomorphological characteristics of high-energy inundation, such as abrupt increases in grain size, integration of muddy rip-up clasts and fining upward sequences which are representative of different tsunami inundation pulses. These investigations were completed by sediment coring as a base for local calibration of geophysical direct push parameters. Surface-based electrical resistivity tomography and seismic data with highly resolved vertical direct push datasets and sediment core data were all coupled in order to improve the quality of the geophysical models. Details of this methodological approach, new in palaeotsunami research, are presented and discussed, especially with respect to the question of how the obtained results may help to facilitate tracing tsunami signatures in the sedimentary record and deciphering geomorphological characteristics of past tsunami inundation. Using direct push techniques and based on sedimentary data, sedimentary signatures of two young tsunami impacts that hit the Kaiafa Lagoon were detected. Radiocarbon age control allowed the identification of these tsunami layers as candidates for the ad 551 and ad 1303 earthquake and tsunami events. For these events, there is reliable historical data on major damage on infrastructure in western Greece and on the Peloponnese. At the former Mouria Lagoon, corroborating tsunami traces were found; however, in this case it is difficult to decide whether these signatures were caused by the ad 551 or the ad 1303 event.  相似文献   

20.
International comparisons of disaster risk frequently classify Malta as being one of the least hazard exposed countries. Such rankings may be criticised because: (1) they fail to take into account historic increases in population and its seasonal variation; (2) they are based on inadequately researched and incomplete historical catalogues of damaging events; and (3), for small island states like Malta, they do not take into account the implications of restricted land area, which can be disproportionately impacted by even small hazardous events. In this paper, we draw upon a variety of data to discuss disaster risk in the Maltese Islands. In particular, the notion that Malta is one of the ‘safest places on earth’ is not only misleading, but also potentially dangerous because it engenders a false sense of security amongst the population. We argue that Malta is exposed to a variety of extreme events, which include: the distal effects of major earthquakes originating in southern Italy and Greece, plus their associated tsunamis; major ash producing eruptions of Mount Etna (Sicily) and their putative impacts on air transport; storm waves; coastal/inland landslides; karstic collapse; flooding and drought. In criticising international rankings of the islands’ exposure, we highlight the issues involved in formulating hazard assessments, in particular incomplete catalogues of extreme natural events. With Malta witnessing swelling resident, seasonal (i.e. tourist) plus foreign-born populations and increases in the urban area, further research into hazards is required in order to develop evidence-based policies of disaster risk reduction (DRR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号