首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The projected properties of a triaxial generalization of the modified Hubble mass model are investigated. The projected surface density can be evaluated analytically, allowing us to investigate its properties in analytic forms. The profiles of axis ratio and position angle of the major axis of constant density elliptical contours, as a function of viewing angles, can be compared with observations.  相似文献   

2.
In the past two decades, it has been established by high-resolution observations of early-type galaxies that their nuclear surface brightness and corresponding stellar mass densities are characterized by cusps. In this paper, we present a new spherical analytical model family describing mild cuspy centres. We study isotropic and anisotropic models of Osipkov–Merritt type. It is shown that the associated distribution functions and intrinsic velocity dispersions can be represented analytically in a unified way in terms of hypergeometric series, allowing thus a straightforward comparison of these important global quantities for galaxies having underlying mass densities which may differ significantly in their degree of central cuspiness or radial falloff.  相似文献   

3.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   

4.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large  m=2  , 4, 6 and 8 components. Contrary to this, for model MD the components  m=6  and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region.  相似文献   

5.
We describe a made-to-measure (M2M) algorithm for constructing N -particle models of stellar systems from observational data (χ2M2M), extending earlier ideas by Syer & Tremaine. The algorithm properly accounts for observational errors, is flexible, and can be applied to various systems and geometries. We implement this algorithm in a parallel code nmagic and carry out a sequence of tests to illustrate its power and performance. (i) We reconstruct an isotropic Hernquist model from density moments and projected kinematics and recover the correct differential energy distribution and intrinsic kinematics. (ii) We build a self-consistent oblate three-integral maximum rotator model and compare how the distribution function is recovered from integral field and slit kinematic data. (iii) We create a non-rotating and a figure rotating triaxial stellar particle model, reproduce the projected kinematics of the figure rotating system by a non-rotating system of the same intrinsic shape, and illustrate the signature of pattern rotation in this model. From these tests, we comment on the dependence of the results from χ2M2M on the initial model, the geometry, and the amount of available data.  相似文献   

6.
We estimate the distribution of intrinsic shapes of APM galaxy clusters from the distribution of their apparent shapes. We measure the projected cluster ellipticities using two alternative methods. The first method is based on moments of the discrete galaxy distribution while the second is based on moments of the smoothed galaxy distribution. We study the performance of both methods using Monte Carlo cluster simulations covering the range of APM cluster distances and including a random distribution of background galaxies. We find that the first method suffers from severe systematic biases, whereas the second is more reliable. After excluding clusters dominated by substructure and quantifying the systematic biases in our estimated shape parameters, we recover a corrected distribution of projected ellipticities. We use the non-parametric kernel method to estimate the smooth apparent ellipticity distribution, and numerically invert a set of integral equations to recover the corresponding distribution of intrinsic ellipticities under the assumption that the clusters are either oblate or prolate spheroids. The prolate spheroidal model fits the APM cluster data best.  相似文献   

7.
The intrinsic, three-dimensional shapes of small galaxy groups, containing between three and eight members, are evaluated using three different statistics: (i) the mean sum of square sines of angles in all possible triangles formed by members of the group; (ii) the variance of square paired separations in the group; (iii) the axial ratio of a rectangle containing the group. The mean values of these parameters and their rms deviations are calculated for observed galaxy groups and simulated groups with members that are distributed randomly within prolate or oblate spheroids. Comparison of observational data and simulations shows that the observed galaxy groups have shapes consistent with the projected shapes of prolate or oblate spheroids with axial ratios of 3:1, regardless of their multiplicity, but inconsistent with the projected shapes of spherical objects.  相似文献   

8.
Deriving the three-dimensional volume density distribution from a two-dimensional light distribution of a system yields generally non-unique results. The case for nearby systems is studied, taking into account the extra constraints from the perspective effect. It is shown analytically that a new form of non-uniqueness exists. The phantom spheroid (PS) for a nearby system preserves the intrinsic mirror symmetry and projected asymmetry of the system while changing the shape and the major-axis orientation of the system. A family of analytical models is given as functions of the distance ( D 0) to the object and the amount ( γ ) of the PS density superimposed. The range of the major-axis angles is constrained analytically by requiring a positive density everywhere. These models suggest that observations other than surface brightness maps are required to lift the degeneracy in the major-axis angle and axis ratio of the central bar of the Milky Way.  相似文献   

9.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

10.
We report here on a survey of N -body simulations of encounters between spherical galaxies. Initial systems are isotropic Jaffe models. Different sets of mass ratios, impact parameters and orbital energies are studied. Both merger remnants and systems perturbed after a non-merging encounter are analysed and compared to real-life elliptical galaxies. The properties of merger remnants show a large variety. Merger remnants resulting from head-on encounters are mainly non-rotating prolate spheroids. Merger remnants from models with   J orb≠ 0  are tri-axial or mildly oblate spheroids, supported in part by rotation. The velocity distributions are biased towards the radial direction in the prolate case and the tangential direction in the oblate case. Non-mergers are affected in various ways, depending on the orbital characteristics. We conclude that many of the global properties of real-life ellipticals can, in principle, be attributed to a merger of spherical progenitors.  相似文献   

11.
We investigate how well the intrinsic shape of early-type galaxies can be recovered when both photometric and two-dimensional stellar kinematic observations are available. We simulate these observations with galaxy models that are representative of observed oblate fast-rotator to triaxial slow-rotator early-type galaxies. By fitting realistic triaxial dynamical models to these simulated observations, we recover the intrinsic shape (and mass-to-light ratio), without making additional (ad hoc) assumptions on the orientation.
For (near) axisymmetric galaxies, the dynamical modelling can strongly exclude triaxiality, but the regular kinematics do not further tighten the constraint on the intrinsic flattening significantly, so that the inclination is nearly unconstrained above the photometric lower limit even with two-dimensional stellar kinematics. Triaxial galaxies can have additional complexity in both the observed photometry and kinematics, such as twists and (central) kinematically decoupled components, which allows the intrinsic shape to be accurately recovered. For galaxies that are very round or show no significant rotation, recovery of the shape is degenerate, unless additional constraints such as from a thin disc are available.  相似文献   

12.
Using the standard dynamical theory of spherical systems, we calculate the properties of spherical galaxies and clusters whose density profiles obey the universal form first obtained in high-resolution cosmological N -body simulations by Navarro, Frenk & White (NFW). We adopt three models for the internal kinematics: isotropic velocities, constant anisotropy and increasingly radial OsipkovMerritt anisotropy. Analytical solutions are found for the radial dependence of the mass, gravitational potential, velocity dispersion, energy and virial ratio and we test their variability with the concentration parameter describing the density profile and amount of velocity anisotropy. We also compute structural parameters, such as half-mass radius, effective radius and various measures of concentration. Finally, we derive projected quantities, the surface mass density and line-of-sight as well as aperture-velocity dispersion, all of which can be directly applied in observational tests of current scenarios of structure formation. On the mass scales of galaxies, if constant mass-to-light is assumed, the NFW surface density profile is found to fit HubbleReynolds laws well. It is also well fitted by Sérsic R 1/ m laws, for     but in a much narrower range of m and with much larger effective radii than are observed. Assuming in turn reasonable values of the effective radius, the mass density profiles imply a mass-to-light ratio that increases outwards at all radii.  相似文献   

13.
We investigate the possibility of discriminating between modified Newtonian dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disc galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic discs in MOND and the same discs in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a two-integral distribution function. We find that the vertical velocity dispersion of deep MOND discs can be much larger than in the equivalent spherical Newtonian models. However, in the more realistic case of high surface density discs, this effect is significantly reduced, casting doubt on the possibility of discriminating between MOND and Newtonian gravity with dark matter by using current observations.  相似文献   

14.
We study triple systems of galaxies with mean projected harmonic separation ≃0.6  h −1 Mpc     We call the systems 'wide triplets', in contrast to compact triplets with mean projected harmonic separation ≃0.04  h −1 Mpc, studied by Karachentsev et al. Data are taken for 108 wide triplets from a list compiled by Trofimov & Chernin; at least one-third of them are considered to be probably isolated physical systems. With typical crossing times of about the Hubble time, the wide triplets seem to be in a state of ongoing collapse. This is confirmed by a set of computer models which simulate well the observational characteristics of the ensemble of wide triplets. The simulations also give a statistical estimate of the total mass of a typical wide triplet: it proves to be ≃1013 M. This figure indicates that the dark matter mass is 15–30 times the mass of baryonic matter in the systems. The dynamics of wide triplets, as well as their dark matter content, provide new direct cosmological constraints by establishing that hierarchical evolution is occurring on a mass scale of ∼1013 M and a spatial scale of ∼1 Mpc.  相似文献   

15.
Hernquist’s (1990) mass model for spherical galaxies and bulges described by the deVaucouleur’s profile gives analytical expressions for the density profile and the potential. These have been used to derive a simple and exact analytical expression for the gravitational potential energy of a pair of interpene-trating spherical galaxies represented by this model. The results are compared with those for polytropic and Plummer models of galaxis.  相似文献   

16.
17.
An inside–out model for the formation of haloes in a hierarchical clustering scenario is studied. The method combines the picture of the spherical infall model and a modification of the extended Press–Schechter theory. The mass accretion rate of a halo is defined to be the rate of its mass increase due to minor mergers. The accreted mass is deposited at the outer shells without changing the density profile of the halo inside its current virial radius. We applied the method to a flat Λ-cold dark matter universe. The resulting density profiles are compared with analytical models proposed in the literature, and a very good agreement is found. A trend is found of the inner density profile to become steeper for larger halo mass, which also results from recent N -body simulations. Additionally, present-day concentrations as well as their time evolution are derived and it is shown that they reproduce the results of large cosmological N -body simulations.  相似文献   

18.
A generalization of the multiphase chemical evolution model applied to a wide set of theoretical galaxies is shown. This set of models has been computed by using the so-called Universal Rotation Curve from (Persic, Salucci and Steel, 1996) to calculate the radial mass distributions of each theoretical galaxy. By assuming that the molecular cloud and star formation efficiencies depend on the morphological type of each galaxy, we construct a bi-parametric grid of models whose results are valid in principle for any spiral galaxy, of given maximum rotation velocity or total mass, and morphological type. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Weak gravitational lensing is now established as a powerful method to measure mass fluctuations in the universe. It relies on the measurement of small coherent distortions of the images of background galaxies. Even low-level correlations in the intrinsic shapes of galaxies could however produce a significant spurious lensing signal. These correlations are also interesting in their own right, since their detection would constrain models of galaxy formation. Using     haloes found in N -body simulations, we compute the correlation functions of the intrinsic ellipticity of spiral galaxies assuming that the disc is perpendicular to the angular momentum of the dark matter halo. We also consider a simple model for elliptical galaxies, in which the shape of the dark matter halo is assumed to be the same as that of the light. For deep lensing surveys with median redshifts ∼1, we find that intrinsic correlations of ∼10−4 on angular scales     are generally below the expected lensing signal, and contribute only a small fraction of the excess signals reported on these scales. On larger scales we find limits to the intrinsic correlation function at a level ∼10−5, which gives a (model-dependent) range of separations for which the intrinsic signal is about an order of magnitude below the ellipticity correlation function expected from weak lensing. Intrinsic correlations are thus negligible on these scales for dedicated weak lensing surveys. For wider but shallower surveys such as SuperCOSMOS, APM and SDSS, we cannot exclude the possibility that intrinsic correlations could dominate the lensing signal. We discuss how such surveys could be used to calibrate the importance of this effect, as well as study spin–spin correlations of spiral galaxies.  相似文献   

20.
An exponentially expanding Universe, possibly governed by a cosmological constant, forces gravitationally bound structures to become more and more isolated, eventually becoming causally disconnected from each other and forming so-called 'island universes'. This new scenario reformulates the question about which will be the largest structures that will remain gravitationally bound, together with requiring a systematic tool that can be used to recognize the limits and mass of these structures from observational data, namely redshift surveys of galaxies. Here we present a method, based on the spherical collapse model and N -body simulations, by which we can estimate the limits of bound structures as observed in redshift space. The method is based on a theoretical criterion presented in a previous paper that determines the mean density contrast that a spherical shell must have in order to be marginally bound to the massive structure within it. Understanding the kinematics of the system, we translated the real-space limiting conditions of this 'critical' shell to redshift space, producing a projected velocity envelope that only depends on the density profile of the structure. From it we created a redshift-space version of the density contrast that we called 'density estimator', which can be calibrated from N -body simulations for a reasonable projected velocity envelope template, and used to estimate the limits and mass of a structure only from its redshift-space coordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号