首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model of processes determining the water exchange encountered in Baltic coastal archipelagos is calibrated and validated against salinity and temperature field data spanning two decades with approximately bi-weekly resolution assessed in the Himmerfjärden estuary. This area is resolved into 17 basins interconnected by 38 individual straits of varying geometrical properties using GIS-based methods. All formulations of the strait exchange flows are free from parameters that need calibration and permit computations of the flow through a strait contraction with or without a coincident sill under a flow classification scheme, of which the first one (a) consists of two groups of multiple layers including aspirated layers from levels beneath the sill crest. The other regimes are as follows. (b) Pure barotropic flow; (c) rotationally controlled flow and (d) plug-flow, which serves as resort solution for flow situations that cannot be solved with (a) and also for computation of the barotropic part of the total flow. For long canals where friction effects act to reduce the flow, a fifth exchange regime is used. The vertical mixing formulation is based on energy balances between supplied wind energy and its work against buoyancy forces. The values of semi-empirical parameters involved in the mixing scheme have been established by calibration against measured data of the first decade period. A statistical evaluation is performed comparing the model results with the measurements of the second decade.  相似文献   

2.
We have investigated the three-dimensional Lagrangian motion of water particles related with tidal exchange between two basins with a constant depth connected through a narrow strait and the effects of density stratification on the exchange processes by tracking a number of the labeled particles. Tide-induced transient eddies (TITEs), which are similar to those in two-dimensional basin, are generated behind the headlands. Upwelling appears around the center of the eddy and sinking around the boundary. When the basins are filled with homogeneous water, a pair of vortices are produced in the vertical cross section of the strait due to bottom stress, with upwellings along the side walls of the strait and sinking in the center of the strait. These circulations form the horizontally convergent field in the cross-strait direction in the upper layers while the horizontal divergence takes place in the bottom layer. These vertical water-motions produce the three-dimensional distribution of velocity shear and phase lag of the tidal current around the strait, and the Lagrangian drifts of water particles become large. As a result, water exchange through the strait is greatly enhanced: The water exchange rate reaches 94.1% which is much larger than that obtained in the vertically integrated two-dimensional model. When the basins are stratified, the stable stratification suppresses the vertical motion so that a pair of vertical vortices are confined in the lower layers. This leads to a decrease in the exchange rate, down to 88.6%. Our numerical results show that the three-dimensional structure of tidal currents should be taken into account in tidal exchange through a narrow strait.  相似文献   

3.
The mechanism governing the mean state and the seasonal variation of the transports through the straits of the Japan Sea is studied using a newly presented, simple analytical model and a basin scale general circulation model (GCM). The GCM reproduces the transports through the straits of the Japan Sea realistically owing to its fine horizontal resolution of about 20 km and realistic topography. A series of experiments conducted by changing surface forcing shows that the annual mean wind-driven circulation in the North Pacific Ocean is most responsible for the formation of the mean transports. It is also found that the seasonal variation of the alongshore component of monsoonal wind stress over the North Pacific basin, especially that over the Okhotsk Sea, is responsible for the seasonal variation of the transports. The simple analytical model can explain these simulated features very well. The physical concept of this model is based on the formation of the around-island circulation through the adjustment of coastally trapped waves and Rossby waves and geostrophic control at the narrow straits. It solves the sea surface heights (SSHs) at the edge of each strait and the transport through it. The value of the line integral of the SSH along the island is determined by the baroclinic Rossby waves approaching the island from the east and the alongshore wind stress around the island. The basin scale seasonal variation of SSH along the coast induced by the variation of the alongshore monsoonal wind stress can also be incorporated into this model by giving the SSH anomaly at the northeastern point of the Soya Strait. Thus, it is suggested that both the mean state and the seasonal variation are caused mainly by wind stress forcing. Minor modification by the seasonal heat flux forcing brings the amplitude and the phase of the seasonal variation closer to the observed values.  相似文献   

4.
The objectives of this study were to (1) investigate whether the availability of suitable zooplankton prey limits the distribution of the coastal larval areas of pike (Esox lucius) in two archipelago areas of the northern Baltic Sea and (2) compare the availability of zooplankton prey in spring between different types of coastal littoral habitat. According to the results, reed belt habitats formed by Phragmites australis constitute hot spots for zooplankton prey in the coastal ecosystem. During the spring, reed-covered shores of the inner archipelago maintained more than 10 times higher densities of copepods and cladocerans, the preferred prey for larval pike, compared to the other studied shores. Temperature conditions were also most favourable in the reed belt habitat. Thus, the reed belts of the inner and middle archipelago were shown to form the best habitat for larval pike in the coastal area of the northern Baltic Sea, and this was also the only habitat where pike larvae were found. Our results suggest that the poor survival and recruitment of pike in the outer archipelago, however, cannot exclusively be explained by sub-optimal feeding conditions of the larvae. There are also other important factors, presumably connected to the exposure to the open sea, that affect the distribution of the pike larvae. Our results, however, highlight the importance of sheltered coastal reed belt shores as reproduction habitat for spring-spawning fish in the northern Baltic Sea. Further, this study disproves the assumption that the seaweed bladder wrack (Fucus vesiculosus) forms a reproduction habitat for pike in the coastal area.  相似文献   

5.
Topographically constrained deep-water flows in the Baltic Sea   总被引:2,自引:0,他引:2  
Density-driven currents have a significant impact on the deep-water characteristics of the Baltic Sea since they account for the water exchange between the deeper parts of neighbouring basins. The essential quantitative problem is to determine the flow rates in relation to a set of external parameters such as the strait topography, the stratification, and the internal circulation of the upstream basin. Using hydraulic theory it is possible to accomplish this by analysing the dynamical constraints that limit the deep-water flux between adjacent basins. On the basis of these results, the deep-water flows through the Bornholm Channel and the Irbe Strait are compared.  相似文献   

6.
《Oceanologica Acta》2002,25(2):51-60
A new composite model, which consists of a generation model of the internal tides and a regularized long wave propagation model, is presented to study the generation and evolution of internal solitary waves in the sill strait. Internal bores in the sill strait are first simulated by the generation model, and then the internal tidal field outside of the sill region is given as input for the propagation model. Numerical experiments are carried out to study the imposing tide, depth profile, channel width and shoaling effect, etc., on the generation and evolution of internal solitary waves. It is shown that only when the amplitude of internal tide at the forcing boundary of the propagation model is large enough that a train of internal solitary waves would be induced. The amplitude of the imposing tide in the generation model, shoaling effect, asymmetry of the depth profile and channel width have some effects on the amplitude of the induced internal solitary wave. The imposing tidal flow superimposed on a constant mean background flow has a great damping effect on the induced internal waves, especially on those propagate against the background flow direction. The generation and propagation of internal solitary waves in three possible straits among the Luzon Strait are simulated, and the reasons for the asymmetry of their propagation are also explained.  相似文献   

7.
The straits connect two large water bodies show highly strong and stratified currents related to meteorological, morphological and hydrodynamic conditions. In some cases, spatial and temporal changes of the stratified currents and their thickness, direction and magnitude are so complex. This complexity directly affects the circulation pattern in the region, water exchange between both ends of the straits and migration of fish species. In order to understand general characteristics of this kind of straits and identifying the complexity of the hydrodynamics of the region and evaluate the secondary currents and recirculation need long term, intensive, field work and measurement studies. As an example of this kind of hydrodynamically complex straits, Bosphorus strait is selected for a field study. The Bosphorus strait has a strongly stratified two-layer system and a unique case of the maximal exchange regime typical of strait flows, which is largely determined by conditions at the Black Sea. Although the Bosphorus strait has distinct two-layer stratification with an associated two-layer system exchange, no continuous current measurements have been made so far, previous measurements all having been random sampling.In this paper, a detailed measurement program has been applied to Bosphorus strait. In the measurement program, a short-term current profile measurement at selected locations at southern part of the strait has been conveyed. Additionally a long-term measurement of current profile has been performed at a selected critical location (in front of the Dolmabahçe Palace) where a recirculation flow exists in the strait. The scope of this paper is to present the techniques and the results of analysis of measurement data. In the measurements the current profile (magnitude and direction) has been determined at every 1 m depth intervals from the surface to the sea bottom at 3 min duration at every hour. Measurements provide that lower-layer flows in northward direction from the Sea of Marmara towards the Black Sea, whereas the upper-layer flow comes from the Black Sea and flows towards the Sea of Marmara in the opposite direction of lower layer. The Bosphorus strait exhibits distinctive features associated with variations in its width and depth. The meandering features of Bosphorus also cause recirculation flows. These results of measurements are presented, discussed and compared with previous studies.  相似文献   

8.
The effect of seawater movement through the Kerch Strait for extreme deviations in the level and speed of currents in the Sea of Azov caused by the action of climate wind fields has been studied using the Princeton ocean model (POM), a general three-dimensional nonlinear model of ocean circulation. Formation of the water flow through the strait is caused by the long-term action of the same type of atmospheric processes. The features of the water dynamics under conditions of changing intensity and active wind direction have been studied. Numerical experiments were carried out for two versions of model Sea of Azov basins: closed (without the Kerch Strait) and with a fluid boundary located in the Black Sea. The simulation results have shown that allowance for the strait leads to a significant change in the velocities of steady currents and level deviations at wind speeds greater than 5 m/s. The most significant effect on the parameters of steady-state movements is exerted by the speed of the wind that generates them; allowance for water exchange through the strait is less important. Analysis of the directions of atmospheric circulation has revealed that the response generated by the movement of water through the strait is most pronounced when a southeast wind is acting.  相似文献   

9.
台湾海峡台风暴潮非线性数值计算   总被引:2,自引:1,他引:2  
台湾海峡平均水深不大于50米,台风侵袭频繁.由于台湾岛的“墙壁效应”和台湾海峡的“狭管效应”的影响,台湾海峡的台风暴潮显得较为独特.以前,我们及其他兄弟单位对福建沿海台风暴潮的研究,大多数仅局限于单站的气-水动力相互作用的研究,很少涉及整个海峡.虽说我们也曾作过福建沿岸台风暴潮现场调查,但进行次数有限,了解的也仅是海峡西岸局部地区的情况,它仅能反映台湾海峡台风暴潮的一个侧面,而无法了解整个海峡地区的风暴潮全貌.  相似文献   

10.
11.
The structure and dynamics of the water are studied on the basis of hydrological and meteorological long-term data combined with the materials of field observations over a period longer than half a century in the region of the Ryukyu archipelago. New data about the hydrological characteristics of the waters were obtained. Characteristic differences of waters of various modifications in the main straits between the islands are demonstrated. The dependence of the water structure formation in the straits on the seasonal variability of the water exchange through the straits is distinguished.  相似文献   

12.
We investigated the sea level response of the Japan Sea to changes in atmospheric pressure using barotropic shallow water models driven by idealized synoptic pressure forcing. The regional response lags behind the synoptic pressure forcing because the adjustment is slowly established by water exchange through narrow, shallow straits. The sea level response of the realistic Japan Sea to the idealized forcing varies with geographical location and shows zonally asymmetric variations in amplitude and phase. The simulated response is in good agreement with the observed response of sea level recorded at Japanese coastal tide gauges. The results of a simple one-dimensional model indicate that the zonally asymmetric pattern, with an eastward-propagating pressure system, is essentially caused by bottom friction in shallow straits. This asymmetry arises if the typical wavelength of the synoptic pressure system is slightly larger than the spatial scale of the Japan Sea.  相似文献   

13.
Within the framework of the linear theory of long waves, with regard for the turbulent viscosity, we study the development of tidal currents in a basin of variable depth with two straits. The problem is solved numerically. The velocity field on the strait-basin boundary is regarded as known. The numerical analysis is performed for different depths of the straits. We study the influence of the geometric characteristics of the basin on the amplitudes of the profile of free surface and wave velocity and establish the dependences of the wave characteristics on the period of current velocities in the strait and the parameters of the basin. In particular, it is shown that the increase in the period of current velocities in the strait leads to significant changes in the level and structure of currents. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 3–12, July–August, 2007.  相似文献   

14.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

15.
The wind-induced water exchange between the ria of Ferrol (NW Spain) and the adjacent shelf is analyzed by means of a three-dimensional hydrodynamic model (MOHID2000). Since thermohaline measurements indicate that the estuary can be considered vertically homogeneous a barotropic version of the model has been used. Real in situ wind measurements have been used for model calibration and further analysis. The approach to study the wind effect on water exchange through the ria strait consisted in subtracting the signal calculated with only tidal forcing (Ts) from the one with wind and tidal forcing (WTs). This shows the existence of a residual circulation, with water flowing in wind direction along surfaces layers and a counter current flowing in the opposite direction at bottom layers. The flux across the strait of Ferrol has shown to increase linearly on wind strength, with a correlation larger than 96% and reaching values close to 20 m3 s−1 under real wind forcing.  相似文献   

16.
The dynamics in the transition zone between the North Sea and Baltic Sea are analyzed here using data from a 22-year-long climatic simulation with a focus on the periods 1992–1994 and 2001–2003 when two recent major inflow events occurred. Observations from gauges and in situ measurements are used to validate the model. Parameters, which cannot be easily measured, such as water and salt transports through straits, have been compared against similar previous estimates. The good performance of simulations is attributed to the finer resolution of the model compared to earlier set ups. The outflow in the Kattegat, which is an analogue of the tidal outflows, tends to propagate to the North over the shallows without showing a substantial deflection to the right due to the Earth's rotation. The inflow follows the topography. The different inflow and outflow pathways are explained as a consequence of the specific combination of bathymetry, axial and lateral processes. The circulation in Kattegat is persistently clockwise with an eastern intensification during inflow and a western one during outflow regimes. The tidal wave there propagates as Kelvin wave, keeping the coast on its right. The flows in the two main straits reveal very different responses to tides, which are also highly asymmetric during inflow and outflow conditions. The circulation has a typical two-layer structure, the correlation between salinity and velocity tends to increase the salt transport in the salinity conveyor belt. The transversal circulation in the entrance of the Sound enhances the vertical mixing of the saltier North Sea water. The long-term averaged ratio of the water transports through the Great Belt and the Sound is ∼2.6-2.7 but this number changes reaching lower values during the major inflow in 1993. The transports in the straits are asymmetric. During inflow events the repartition of water penetrating the Baltic Sea is strongly in favor of the pathway through the Sound, which provides a shorter connection between the Kattegat and Baltic proper. The wider Great Belt has a relatively larger role in exporting water from the Baltic into the North Sea. A demonstration is given that the ventilation of the Baltic Sea deep water is not only governed by the dynamics in the straits and the strong westerly winds enhancing the eastward propagation of North Sea water (a case in 1993), but also by the clockwise circulation in the Kattegat acting as a preconditioning factor for the flow-partitioning.  相似文献   

17.
《Oceanologica Acta》1998,21(3):393-417
Available climatic and atmospheric analysis data have been used to prepare forcing functions for the Black Sea numerical model, based on the Bryan-Semtner-Cox Modular Ocean Model and including parameterizations for the atmosphere-ocean exchange, inflow through the strait of Bosphorus and the Mediterranean plume. Atmospheric data from different sources are compared and the drawbacks of some of them illustrated. A new wind stress data set, based on ship observations, is prepared. Compared to the existing wind stress estimates, the present ones use additional data and more accurate parameterization of the boundary layer physics. The intercomparison between forcing data sets is focused on the heat flux and freshwater flux at the sea surface.The model simulates adequately vertical stratification, seasonal variability and horizontal patterns. Five data sets for heat flux, freshwater flux and wind stress are used in different combinations to study the model response. The large differences between the simulations, forced by different wind stress and identical thermohaline forcing, justify the computation of the new wind stress. Though the forcing data used are perhaps close to the best available at the moment for the Black Sea, the model simulations range in large intervals and some of them are very poor. The model responses to forcing functions of different origin give rough estimates on the possible errors in present-day simulations. Some inconsistencies give clear indications that further verifications, improvements of the forcing functions, and intercomparisons between the responses simulated by the ocean circulation models are needed.  相似文献   

18.
This paper studies sea level anomaly (SLA) behaviour in Malacca and Singapore straits which serve part of a major maritime trade route between Indian and Pacific Ocean using both observed data and numerical model. Spatio-temporal behaviour of SLA in the region is analyzed based on 15 years of in-situ and remote sensing data. Results show that SLA signatures can be distinctly different in the two straits, with vastly opposite behaviours during certain months. By further analyzing spatial dependency of observed SLA in the region, SLA in Malacca and Singapore straits are found to be under the influence of Indian Ocean and South China Sea, respectively. Based on this insight, a numerical model is built with the appropriate non-tidal forcing derived from meteorological model and satellite dataset to properly represent SLA in Malacca and Singapore straits with Root Mean Square Error of less than 10 cm. With this well calibrated model, the effect of different types of forcing on volume flux through the straits is investigated. Combined tidal and non-tidal forcing in the model gives 4 to 7 × 1011 m3 of annual net westward volume flux through the straits which is four to seven times higher than that of tidal forcing alone. Furthermore with this combined forcing, a distinct seasonal trend with westward net flow during northeast monsoon (November to March) and eastward net flow during southwest monsoon (May to September) can be observed through the straits in the model which is not observed with tidal forcing. The findings of this paper highlight the importance of these non-tidal forcing in the model to obtain accurate SLA and flow representation in the straits that is vital to environmental fate and transport modelling during operational forecast.  相似文献   

19.
The purpose of this work is to a present a numerical model to solve a set of modified Boussinesq equations to analyse nonlinear resonance of semi-enclosed water bodies. The equations are solved on a finite element unstructured grid in order to achieve an optimal mesh resolution with the local geometry. The model is able to simulate long time lapses and realistic forcing in real bathymetries with a reasonable computational cost. To validate the numerical results, a set of experiments was carried out in a physical model of two adjacent elongated basins. Comparisons between numerical and experimental results for different geometries and nonlinear conditions show that the model is able to simulate with an excellent agreement the transient nonlinear resonant process.  相似文献   

20.
A nested numerical storm surge forecast model for the East China Sea is developed. Aone-way relaxing nest method is used to exchange the information between coarse grid and fine grid. In the inner boundary of the fine grid model a transition area is set up to relax the forecast variables. This ensures that the forecast variables of the coarse model may transit to those of fine grid gradually, which enhances the model stability. By using this model, a number of hindcasts and forecast are performed for six severe storm surges caused by tropical cyclones in the East China Sea. The results show good agreement with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号