首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper analyses the geometry of thin-skinned thrust zones, where the thrusts shallow out at depth and of thicker-skinned fault zones where much of the crust is involved and where the thrusts are frequently observed to become steeper downwards. In the interiors of many orogenic belts the steep dip of faults is not original but due to the folding above lower decoupling zones. The energy involved in the internal deformation of hanging-wall rocks may prohibit many faults becoming more shallow upwards. Such shallowing-upwards faults may occur in more ductile rocks to maintain compatibility between zones which have experienced different deformation intensities, but displacements on the faults are unlikely to be large.Another mechanism for producing faults which steepen downwards is proposed for the major thrusts which form the southern margin to the Himalayas. These carry large thicknesses (30 to 100 km) of crustal and upper mantle rocks to the south, causing flexuring and isostatic depression of the Indian plate. The steeply dipping thrusts are not footwall ramps; these may be some distance behind the steepened zone. This thrust-induced isostatic bending of the crust has important implications when considering regional seismic interpretations as well as thrust mechanics and kinematics.  相似文献   

2.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

3.
Understanding of seismicity and seismotectonics of Delhi and adjoining areas is essential as these areas lie in the seismic zone IV and are geologically confined to the Delhi Fold Belt (DFB), juxtaposed to the Himalayan Frontal Thrust Fold Belt. Owing to the set-up, seismicity in this area is ascribed to the Himalayan Thrust System and activation of DFB Fault Systems. Considerably improved instrumental seismic monitoring in this area and data analysis had resolved three regions of pronounced seismicity that lie close to Sonepat, Rohtak and western part of the NCT Delhi, attributed to activation of various portions of the fault systems of the DFB. Based on seismic telemetry network data, the seismicity pattern analysis revealed that the Mahendragarh Dehradun Sub-Surface Fault (MDSSF) and Delhi Sargodha Ridge (DSR) are the two major zones of structural importance for the nucleation of seismicity in this region. These revelations were corroborated with the fault plane solution of the earthquakes. The dominant mechanism in nucleation of seismicity in DFB is the thrust with minor strike slip. The seismicity and seismotectonics of Delhi and adjoining areas endemic to activation of DFB is reviewed and presented in this paper.  相似文献   

4.
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing.The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2–3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.  相似文献   

5.
A structural interpretation of the Ziarat block in the Balochistan region (a part of the Suleiman Fold and Thrust Belt) has been carried out using seismic and seismological data. Seismic data consists of nine 2.5D pre‐stack migrated seismic lines, whereas the seismological data covers the Fault Plane Solution and source parameters. Structural interpretation describes two broad fault sets of fore and back thrusts in the study area that have resulted in the development of pop‐up structures, accountable for the structural traps and seismicity pattern in terms of seismic hazard. Seismic interpretation includes time and depth contour maps of the Dungan Formation and Ranikot group, while seismological interpretation includes Fault Plane Solution, that is correlated with a geological and structural map of the area for the interpretation of the nature of the subsurface faults. Principal stresses are also estimated for the Ranikot group and Dungan Formation. In order to calculate anisotropic elastic properties, the parameters of the rock strength of the formations are first determined from seismic data, along with the dominant stresses (vertical, minimum horizontal, and maximum horizontal). The differential ratio of the maximum and minimum horizontal stresses is obtained to indicate optimal zones for hydraulic fracturing, and to assess the potential for geothermal energy reservoir prospect generation. The stress maps indicate high values towards the deeper part of the horizon, and low towards the shallower part, attributed to the lithological and structural variation in the area. Outcomes of structural interpretation indicate a good correlation of structure and tectonics from both seismological and seismic methods.  相似文献   

6.
Heterogeneity, whether geometric or rheologic, in crustal material undergoing compression affects the geometry of the structures produced. This study documents the thrust fault geometries produced when discrete linear asperities are introduced into an analog model, scaled to represent bulk upper crustal properties, and compressed. Varying obliquities of the asperities are used, relative to the imposed compression, and the resultant development of thrust fault traces and branch lines in map view is tracked. Once the model runs are completed, cross-sections are created and analyzed. The models show that asperities confined to the base layer promote the clustering of branch lines in the surface thrusts. Strong clustering in branch lines is also noted where several asperities are in close proximity or cross. Slight reverse-sense reactivation of asperities cut through the sedimentary sequence is noted in cross-section, where the asperity and the subsequent thrust belt interact. The model results are comparable to the situation in the Dinaric Alps, where pre-existing faults to the SW of the NE Adriatic Fault Zone contribute to the clustering of branch lines developed in the surface fold-thrust belt. These results can therefore be used to evaluate the evolution of other basement-involved fold-thrust belts worldwide.  相似文献   

7.
断裂带通常包括狭窄的断层核与宽阔的破碎带,并对岩石物理及其水力学、流体与渗透性具有重要作用。根据断裂破碎带结构的差异,将碳酸盐岩断层核划分为颗粒支撑、基质支撑与胶结支撑等3种类型,将碳酸盐岩破碎带划分碎裂带与裂缝带。不同类型碳酸盐岩断层核与破碎带形成多种类型组合,并造成断裂破碎带多种复杂的渗流结构。通过井—震资料的结合,可以判识沉积盆地内部较宽的碳酸盐岩断裂破碎带,其宽度—位移关系可以指示断裂破碎带的不同生长方式与机制。复杂内部结构、多期构造成岩作用与non-Andersonian破裂机制可能导致碳酸盐岩断裂破碎带的异常生长,也是碳酸盐岩断裂破碎带机理研究的重要方向。  相似文献   

8.
碳酸盐岩断裂破碎带结构、分布与发育机制   总被引:1,自引:0,他引:1  
断裂带通常包括狭窄的断层核与宽阔的破碎带,并对岩石物理及其水力学、流体与渗透性具有重要作用。根据断裂破碎带结构的差异,将碳酸盐岩断层核划分为颗粒支撑、基质支撑与胶结支撑等3种类型,将碳酸盐岩破碎带划分碎裂带与裂缝带。不同类型碳酸盐岩断层核与破碎带形成多种类型组合,并造成断裂破碎带多种复杂的渗流结构。通过井一震资料的结合,可以判识沉积盆地内部较宽的碳酸盐岩断裂破碎带,其宽度一位移关系可以指示断裂破碎带的不同生长方式与机制。复杂内部结构、多期构造成岩作用与non-Andersonian破裂机制可能导致碳酸盐岩断裂破碎带的异常生长,也是碳酸盐岩断裂破碎带机理研究的重要方向。  相似文献   

9.
The Gubbio fault is an active normal fault defined by an important morphological scarp and normal fault focal mechanism solutions. This fault truncates the inherited Miocene Gubbio anticline and juxtaposes Mesozoic limestones in the footwall against Quaternary lacustrine deposits in the hanging wall. The offset is more than 2000 m of geological throw accumulated during a poly-phased history, as suggested by previous works, and has generated a complex zone of carbonate-rich fault-related structures. We report the results of a multidisciplinary study that integrates detailed outcrop and petrographic analysis of two well-exposed areas along the Gubbio fault zone, geochemical analysis (fluid inclusions, stable isotopes, and trace elements) of calcite-sealed fault-related structures and fault rocks, and biostratigraphic controls. Our aims are: (i) the characterization of the deformation features and their spatial–temporal relationships, and (ii) the determination of the P/T conditions and the fluid behaviour during deformation to achieve a better understanding of fluid–rock interaction in fault zones.We show that few of the observed structures can be attributed to an inherited shortening phase while the most abundant structures and fault rocks are related to extensional tectonics. The outcropping extensional patterns formed at depths less than 2.5–3 km, in a confined fluid system isolated from meteoric water, and the fault structures are the response to a small amount of cumulated displacement, 12–19% of the total geological throw.  相似文献   

10.
Understanding the way fluids flow in fault zones is of prime importance to develop correct models of earthquake mechanics, especially in the case of the abnormally weak San Andreas Fault (SAF) system. Because fluid flow can leave detectable signatures in rocks, geochemistry is essential to bring light on this topic. The present detailed study combines, for the first time, C–O isotope analyses with a comprehensive trace element data set to examine the geometry of fluid flow within a significant fault system hosted by a carbonate sequence, from a single locality across the Little Pine Fault–SAF system. Such a fault zone contains veins, deformation zones, and their host rocks. Stable isotope geochemistry is used to establish a relative scale of integrated fluid–rock ratios. Carbonate δ18O varies between 28‰ and 15‰ and δ13C between 5‰ and −7‰. From highest to lowest delta values, thus from least to most infiltrated, are the host rocks, the vein fillings, and the deformation zone fillings, respectively. Infiltration increases toward fault core. The fluids are H2O–CO2 mixtures. Two fluid sources, one internal and the other external, are found. The external fluid is inferred to come essentially from metamorphism of the Franciscan formation underneath. The internal (local) fluid is provided by a 30% volume reduction of the host limestones resulting from pressure solution and pore size reduction. Most trace elements, including the lanthanides, show enrichment at the 100-m scale in host carbonate rocks as fluid–rock ratios increase toward the fault core. In contrast, the same trace element concentrations are low, relative to host rocks, in veins and deformation zone carbonate fillings, and this difference in concentration increases as fluid–rock ratio increases toward the fault core. We suggest that the fluid trace elements are scavenged by complexation with organic matter in the host rocks. Elemental complexation is especially illustrated by large fractionation of Y–Ho and Nb–Ta geochemical pairs. Complexation associated with external fluid flow has a significant effect on trace element enrichment (up to 700% relative enrichment) while concentration by pressure solution associated with volume decrease of host rocks has a more limited effect (up to 40% relative enrichment). Our observations from the millimeter to the kilometer scale call for the partitioning of fluid sources and pathways, and for a mixed focused–pervasive fluid flow mechanism. The fluid mainly flows within veins and deformation zones and, simultaneously, within at least 10 cm from these channels, part of the fluid flows pervasively in the host rock, which controls the fluid composition. Scavenging of the fluid rare earth elements (REE) by host rocks is responsible for the formation of REE-depleted vein and deformation zone carbonate fillings. Fluid flow is not only restricted to veins or deformation zones as commonly believed. An important part of fluid flow takes place in host rocks near fault zones. Hence, the nature of the lithologies hosting fault zones must be considered in order to take into account the role of fluids in the seismic cycle.  相似文献   

11.
Relatively few studies have examined fault rock microstructures in carbonates. Understanding fault core production helps predict the hydraulic behaviour of faults and the potential for reservoir compartmentalisation. Normal faults on Malta, ranging from <1 m to 90 m displacement, cut two carbonate lithofacies, micrite-dominated and grain-dominated carbonates, allowing the investigation of fault rock evolution with increasing displacement in differing lithofacies. Lithological heterogeneity leads to a variety of deformation mechanisms. Nine different fault rock types have been identified, with a range of deformation microstructures along an individual slip surface. The deformation style, and hence type of fault rock produced, is a function of host rock texture, specifically grain size and sorting, porosity and uniaxial compressive strength. Homogeneously fine-grained micrtie-dominated carbonates are characterised by dispersed deformation with large fracture networks that develop into breccias. Alternatively, this lithofacies is commonly recrystallised. In contrast, in the coarse-grained, heterogeneous grain-dominated carbonates the development of faulting is characterised by localised deformation, creating protocataclasite and cataclasite fault rocks. Cementation also occurs within some grain-dominated carbonates close to and on slip surfaces. Fault rock variation is a function of displacement as well as juxtaposed lithofacies. An increase in fault rock variability is observed at higher displacements, potentially creating a more transmissible fault, which opposes what may be expected in siliciclastic and crystalline faults. Significant heterogeneity in the fault rock types formed is likely to create variable permeability along fault-strike, potentially allowing across-fault fluid flow. However, areas with homogeneous fault rocks may generate barriers to fluid flow.  相似文献   

12.
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic–Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N–S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.  相似文献   

13.
山东郯城麦坡被命名为典型地震活动断层遗址,其最醒目的标志是郯庐断裂带主干断层(F2)东盘的紫灰色下白垩统逆冲到断层西盘的红棕色第四系之上且界线截然。野外调查和试验分析表明,郯城麦坡第四系于泉组中发育液化砂涌管、液化砂脉、震裂缝充填构造和同沉积断层等地震引发的软沉积物变形构造——地震事件记录。根据软沉积物变形构造的砂质黏土光释光测年分析,推断这些软沉积物变形构造所记录的地震事件属郯庐断裂带主干断层F2在中更新世晚期发生的强构造与地震活动。这些地震事件记录为研究郯庐断裂带新构造运动与地震活动提供了新资料,也丰富了该地震活动断层遗址的内涵。  相似文献   

14.
Fault rocks from the Siberia Fault Zone (SFZ) in southern New Zealand are derived from schists with varied mica contents. Regional evidence indicates that the rocks are exhumed from depths of 8-10 km and temperatures of 200-250 °C. Foliated cataclasites in a zone 5-40 m thick are accompanied by interlaced pseudotachylyte, and are cut through by a late-stage master fault and zones of random fabric cataclasite. Textures and microstructures in the foliated cataclasites reflect contemporaneous or cyclic operation of cataclastic, crystal-plastic and solution transfer deformation mechanisms, partitioned differently between different phases. The deformation regime is interpreted as a form of semi-brittle flow, facilitated by crystal-plastic deformation of phyllosilicate phases in a relatively weak interconnected matrix. Quartz and feldspar are deformed mainly by cataclasis. The presence of pseudotachylyte indicates the fault was seismically active, and non-localised semi-brittle flow was episodically punctuated by high strain-rate earthquake events. Late-stage formation of a discrete master fault probably reflects a change from semi-brittle flow to brittle faulting. The presently exposed level of the fault is thought to represent a section of the mid-crustal brittle-ductile transition in the seismogenic zone. Thus, this study provides a tangible natural example of theoretically and experimentally predicted fault rocks.  相似文献   

15.
The paper describes the mechanical and microstructural characteristics associated with the brittle to cataclastic flow transition in an orthoquarzite (Oughtibridge Ganister), and compares its microstructural development with features of cataclastic deformation of rocks in nature. The brittle to ductile transition in dry ganister occurs at about 600 MPa at room temperature. At lower pressures shear oriented grain boundary cracks form both pre and post peak strength, loosening the microstructure to the point at which axial transgranular cracks develop. Fault zone localization then occurs. At high pressures fault localization is suppressed by friction, and cataclastic flow occurs by the formation of ultracataclasite shear zones around each grain boundary, Rhomb shaped, relatively intact grain cores survive to high (greater than 20%) strains. Hardening mechanisms responsible for the ductility are discussed. It is shown that natural zones of intense cataclasis (fault zones) often develop microstructures comparable with those seen in these experiments, but the less intense cataclastic flow often associated with folding of rocks at high crustal levels in the external zones of orogenic belts is not comparable inasmuch as grain-scale catalaclasis does not normally occur. It is emphasised that finite strain microstructural similarity does not necessarily point to comparable deformation paths and stress history.  相似文献   

16.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

17.
The Dabie and Sulu orogens between the North China and the Yangtze cratons were left-laterally offset about 4(H) km along the NE-striking Tan-Lu Fault Zone. The fault zone terminates abruptly at the southeastern corner of the Dabie Orogen, suggesting unique origin of the fault zone which remains controversial. Structures in the Zhangbaling Croup and Feidong Complex in the Zhangbaling Uplift formed in a flat-lying ductile detachment zone with a shear sense of top to the SSW. Whereas, the Tan-Lu shear zone in the l.ujiang area exhibits as a sinistral ductile shear zone. Thus, the Tan-Lu Fault Zone in the east of the Dabie Orogen experienced two phases of deformation. The first phase deformation exhibits as sinistral ductile shear belts, the sinistral ductile shear zone was then involved in the NK-SW trending tightly folds and thrusts deformation. The Susong Complex and Zhangbaling Group in the Dabie Orogens exhibit as exhumation structures. According previous muscovite 4'Ar/,>Ar ages and deformation of syn-collisional folds and thrusts, we propose an indentation-induced continent-Tearing model for the initialization the Tan-Lu Fault Zone.  相似文献   

18.
The relationships between thrusts and normal faults represent primary constraints in the reconstruction of the modes and timing of pre-, syn- and post-orogenic deformation events in fold-and-thrust belts. Such relationships are well exposed in curved orogenic belts where the thrusts are oblique to the trend of normal faults.We study the NNE–SSW-trending Olevano-Antrodoco-Sibillini oblique thrust and its crosscutting relationships with NW–SE-trending normal faults in order to constrain the Neogene–Quaternary deformation history of the Central-Northern Apennine (Italy). The analysis of structural and geological data allowed us to reconstruct the geometric and kinematic constraints of two inversion events: 1 – During the Pliocene, positive inversion reactivated the NNE–SSW-trending pre-existing Ancona-Anzio normal fault as the Olevano-Antrodoco-Sibillini oblique thrust ramp and caused the shortcut of NW–SE-oriented normal faults; 2 – During the Quaternary, negative inversion reactivated NW–SE-trending pre-thrusting normal faults.The growth of the NW–SE Quaternary normal faults causes seismicity and is responsible of the development of wide Quaternary intramontane basins. Their distribution and the related seismicity have been controlled and compartmentalized by NNE–SSW-trending oblique thrusts. Thus, the crosscutting relationships between thrusts and normal faults are crucial in seismic hazard assessment.  相似文献   

19.
The seismicity and the associated seismic hazard in the central part of the Pannonian region is moderate, however the vulnerability is high, as three capital cities are located near the most active seismic zones. In our analysis two seismically active areas, the Central Pannonian and Mur-Mürz zones, have been considered in order to assess the style and rate of crustal deformation using Global Positioning System (GPS) and earthquake data.We processed data of continuous and campaign GPS measurements obtained during the years 1991–2007. Velocities relative to the stable Eurasia have been computed at HGRN, CEGRN and EPN GPS sites in and around the Pannonian basin. Uniform strain rates and relative displacements were calculated for the investigated regions. GPS data confirm the mostly left lateral strike slip character of the Mur-Mürz–Vienna basin fault system and suggest a contraction between the eastward moving Alpine-North Pannonian unit and the Carpathians.The computation of the seismic strain rate was based on the Kostrov summation. The averaged unit norm seismic moment tensor, which describes the characteristic style of deformation, has been obtained from the available focal mechanism solutions, whereas the annual seismic moment release showing the rate of the deformation was estimated using the catalogues of historical and recent earthquakes.Our analysis reveals that in the Central Pannonian zone the geodetic strain rate is significantly larger than the seismic strain rate. Based on the weakness of the lithosphere, the stress magnitudes and the regional features of seismicity, we suggest that the low value of the seismic/geodetic strain rate ratio can be attributed to the aseismic release of the prevailing compressive stress and not to an overdue major earthquake. In the Mur-Mürz zone, although the uncertainty of the seismic/geodetic strain rate ratio is high, the seismic part of the deformation seems to be notably larger than in the case of the Central Pannonian zone. These results reflect the different deformation mechanism, rheology and tectonic style of the investigated zones.  相似文献   

20.
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号