首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
The study of 1000-km seismic reflection profiles, along the Northern Moroccan margin, allowed browsing new imaging in detail about the regional geological structures and their functioning. To achieve this goal, we elaborated a high-resolution depth model and a global tectonic sketch. The influence of recent tectonic activity is manifested by normal and strike-slip faults, trending mainly 70° N and 125° N. In this segment, the Nekor strike-slip fault seems to be connected to a secondary major fault system that changes direction from 30° N to 70° N, and changing behavior to left-lateral strike-slip fault with normal component. Analysis of local seismic activity recorded from 1990 to 2014 with moderate magnitudes activity shows alignments in clear superposition with the detected active faults in seismic reflection lines.  相似文献   

3.
The Longquanzhan gold deposit hosted in granitic cataclasites with mylontization of the foot wall of the main Yishui-Tangtou fault. 3He/4He ratios in fluid inclusions range from 0. 14 to 0. 24 R/Ra,close to those of the crust-source helium. 40Ar/36Ar ratios were measured to be 289-1811, slightly higher than those of atmospheric argon. The results of analysis of helium and argon isotopes suggested that ore-forming fluids were derived chiefly from the crust. The δ18O values of fluid inclusions from vein quartz range from -1.78‰ to 4.07‰, and the δD values of the fluid inclusions vary between -74‰ and -77‰. The hydrogen and oxygen isotope data indicated that the ore-forming fluid for the Longquanzhan gold deposit had mixed with meteoric water in the process of mineralization. This is consistent with the conclusion from the helium and argon isotope data.  相似文献   

4.
The reconstruction of stress fields in the Lower Amur region allowed us to subdivide them into four groups. Two groups are related to the fields of the strike-slip fault type and others to the reverse and normal fault types. As a result of structural analysis, it has been established that the stress fields differ in age and correspond to different stages of deformation. It has been shown that origin and evolution of the Cenozoic basins in the Lower Amur region were related to the paleogeodynamics of the faults, which served as a northeastern continuation of the Tan-Lu Fault System, as well as of the NW-striking faults at the lower reaches of the Amur River. Based on the data obtained, a new model of the origin, formation, and evolution of basins in the Lower Amur region is proposed.  相似文献   

5.
6.
A 2000 km long dextral Talas-Fergana strike–slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar–Ar dating of micas. We also carried out a U–Pb–Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U–Pb zircon SHRIMP ages 728 ± 11 Ma and 778 ± 11 Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and their calculated tHfc ages varied from 2.42 to 2.71 Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279 ± 5 Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and calculated tHfc ages from 2.42 to 2.71 Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300–400 °C and caused resetting of the K–Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar–Ar muscovite age of 241 Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a “minimum” age of dextral motions along this section of the fault in the Triassic while younger ages varying from 227 Ma to 199 Ma with typical staircase patterns indicate protracted growth and recrystallization of micas during ductile deformations which continued until the end of the Triassic.  相似文献   

7.
The paper considers the morphology, deep structure, and geodynamic features of the Ural–Herirud postorogenic strike-slip fault (UH fault), along which the Moho (the “M”) shifts along the entire axial zone of the Ural Orogen, then further to the south across the Scythian–Turan Plate to the Herirud sublatitudinal fault in Afghanistan. The postcollisional character of dextral displacements along the Ural–Herirud fault and its Triassic–Jurassic age are proven. We have estimated the scale of displacements and made an attempt to make a paleoreconstruction, illustrating the relationship between the Variscides of the Urals and the Tien Shan before tectonic displacements. The analysis of new data includes the latest generation of 1: 200000 geological maps and the regional seismic profiling data obtained in the most elevated part of the Urals (from the seismic profile of the Middle Urals in the north to the Uralseis seismic profile in the south), as well as within the sedimentary cover of the Turan Plate, from Mugodzhary to the southern boundaries of the former water area of the Aral Sea. General typomorphic signs of transcontinental strike-slip fault systems are considered and the structural model of the Ural–Herirud postcollisional strike-slip fault is presented.  相似文献   

8.
The Havran-Bal?kesir Fault Zone (HBFZ) is one of the major active structures of the Southern Marmara Region, which has been shaped by the southern branch of North Anatolian fault since the Pliocene. HBFZ is a 10–12 km wide, 120 km long, right-lateral strike-slip fault zone that consists of two ENE-striking main faults, namely, the Havran-Balya and Bal?kesir faults. The 90-km-long Havran-Balya fault exhibits right-stepping en echelon geometry and is made up of (1) Havran, (2) Osmanlar, (3) Turplu and (4) Ovac?k fault segments. On the eastern part, the 70-km-long Bal?kesir fault is divided into two fault segments; (1) Gökçeyaz? and (2) Kepsut. We estimated the long-term slip rate between 3.59 and 3.78 mm/yr using river offset. The Kepsut, Gökçeyaz? and Ovac?k fault segments are capable of generating an earthquake with a moment magnitude of up to 7.2. Detailed palaeoseismological studies show that the HBFZ is responsible for some surface faulting earthquakes with an average recurrence interval of 1000–2000 years during the late Holocene. Considering the fact that there was no evidence of a surface-ruptured earthquake for 2000 years, it can be stated that there is a seismic gap on the Gökçeyaz? fault segment.  相似文献   

9.
ABSTRACT

The relationship between the sinistral strike-slip Altyn Tagh Fault (ATF) and the internal tectonic deformation of the Qaidam Basin remains a controversial issue. Uncovering the relationship between the structures along the southern slope of the ATF is a viable solution to this problem. The ‘snake-like’ Hongsanhan superposed fold is located on the southern slope of the ATF. The Hongsanhan structure is controlled by the superposition of two generations of folds. The first-generation NW–SE-trending f1 fold, which developed during the Oligocene, constitutes the principal component of the present-day Hongsanhan fold, while the second-generation NE–SW-trending f2 folds formed during the middle Miocene. The structure of the Hongsanhan superposed fold proves that the large-scale sinistral strike-slip movements along the ATF began during the Oligocene. In addition, a flower structure associated with the ATF continuously extends into the Qaidam Basin.  相似文献   

10.
《International Geology Review》2012,54(13):1562-1578
The Tan–Lu fault is a well-known active fault belt in eastern China that has been the focus of geologic studies over the past 40 years. Since the late 1990s, numerous geophysical and geological investigations of this dislocation zone have been carried out by Chinese oil companies, as well as by universities. However, its deep structure, active periods of slip, and fault mechanism remain obscure. This study focuses on the deep structures within the Jiashan–Lujiang segment of the Tan–Lu fault belt, using high-precision geophysical tools, including magnetotelluric and magnetic sounding, and artificial seismic exploration using active source methods. Our results suggest that this segment is composed of several sub-faults. The southern part of the Tan–Lu fault belt, along the Jiashan–Lujiang sub-fault, can be divided into two parts on the basis of contrasting geological features. The Chihe–Taihu sub-fault is taken as the boundary between the two. The region east of the Chihe–Taihu sub-fault is dominated by strike–slip activity along several sub-faults. Only the Jiashan–Lujiang sub-fault is exposed at the surface, forming a large, positive flower structure, the result of late Middle Jurassic to early Late Jurassic strike–slip movement along the dislocation zone. Three sub-faults are present in Dingyuan County, two of which disappear in the southern Hefei Basin. Only the Chihe–Taihu sub-fault extends to the eastern edge of this basin, creating a half-graben depression that formed during the Early Cretaceous. Our results indicate that the present-day deep structure of the southern portion of the Tan–Lu fault zone is the result of a combination of strike–slip and extensional tectonics.  相似文献   

11.
12.
The ENE–WSW Autun Shear Zone in the northeastern part of the French Massif Central has been interpreted previously as a dextral wrench fault. New field observations and microstructural analyses document a NE–SW stretching lineation that indicates normal dextral motions along this shear zone. Further east, similar structures are observed along the La Serre Shear Zone. In both areas, a strain gradient from leucogranites with a weak preferred orientation to highly sheared mylonites supports a continuous Autun–La Serre fault system. Microstructural observations, and shape and lattice-preferred orientation document high-temperature deformation and magmatic fabrics in the Autun and La Serre granites, whereas low- to intermediate-temperature fabrics characterize the mylonitic granite. Electron microprobe monazite geochronology of the Autun and La Serre granites yields a ca. 320 Ma age for pluton emplacement, while mica 40Ar-39Ar datings of the Autun granite yield plateau ages from 305 to 300 Ma. The ca. 300 Ma 40Ar-39Ar ages, obtained on micas from Autun and La Serre mylonites, indicate the time of the mylonitization. The ca. 15-Ma time gap between pluton emplacement and deformation along the Autun–La Serre fault system argue against a synkinematic pluton emplacement during late orogenic to postorogenic extension of the Variscan Belt. A ductile to brittle continuum of deformation is observed along the shear zone, with Lower Permian brittle faults controlling the development of sedimentary basins. These results suggest a two-stage Late Carboniferous extension in the northeastern French Massif Central, with regional crustal melting and emplacement of the Autun and La Serre leucogranites around 320 Ma, followed, at 305–295 Ma, by ductile shearing, normal brittle faulting, and subsequent exhumation along the Autun–La Serre transtensional fault system.  相似文献   

13.
14.
砂岩型铜矿床(沉积岩容矿层状铜矿床)作为一种重要的铜矿床广泛发育于滇西兰坪盆地内。经典的砂岩型铜矿床成因模式认为该类矿床形成于伸展背景下的沉积盆地内,但兰坪盆地内的砂岩型铜矿床则产出于挤压背景下的陆-陆碰撞造山带内,其成矿与地壳缩短密切相关。通过详细构造解析揭示成矿与构造变形的时空关系是理解挤压背景下铜成矿过程的基础。本文基于12.5万区域地质调查,详细分析了白洋厂砂岩型铜矿床的区域构造、矿体与构造的空间关系。构造分析结果显示,矿区白垩系经历了中新世东西向挤压变形,形成近南北走向逆断层+近东西走向掀斜-走滑断层构造组合;地壳缩短期间,在主要逆断层前锋(下盘)形成中新世含石膏层的小型周缘前陆盆地。铜多金属矿化发生在逆断层主破碎带或上盘次级破碎带内,赋矿围岩皆为白垩系。基于构造-盆地-矿体这一空间关系,结合矿石结构、区域地质特点,我们提出成矿金属元素主要源自中新世周缘前陆盆地卤水,还原硫来自隐伏于白垩系之下的晚三叠统三合洞组中的还原性流体。始于中新世早期的地壳缩短在晚三叠世、白垩纪地层中形成破裂构造,使得中新世周缘前陆盆地中的卤水下渗、保存于晚三叠世地层中的还原性流体上升,而当两种流体在主要断裂破碎带内发生混合时,则发生硫化物沉淀成矿。  相似文献   

15.
The chemical and isotopic compositions of clay minerals such as illite and chlorite are commonly used to quantify diagenetic and low-grade metamorphic conditions, an approach that is also used in the present study of the Monte Perdido thrust fault from the South Pyrenean fold-and-thrust belt. The Monte Perdido thrust fault is a shallow thrust juxtaposing upper Cretaceous–Paleocene platform carbonates and Lower Eocene marls and turbidites from the Jaca basin. The core zone of the fault, about 6 m thick, consists of intensely deformed clay-bearing rocks bounded by major shear surfaces. Illite and chlorite are the main hydrous minerals in the fault zone. Illite is oriented along cleavage planes while chlorite formed along shear veins (<50 μm in thickness). Authigenic chlorite provides essential information about the origin of fluids and their temperature. δ18O and δD values of newly formed chlorite support equilibration with sedimentary interstitial water, directly derived from the local hanging wall and footwall during deformation. Given the absence of large-scale fluid flow, the mineralization observed in the thrust faults records the P–T conditions of thrust activity. Temperatures of chlorite formation of about 240°C are obtained via two independent methods: chlorite compositional thermometers and oxygen isotope fractionation between cogenetic chlorite and quartz. Burial depth conditions of 7 km are determined for the Monte Perdido thrust reactivation, coupling calculated temperature and fluid inclusion isochores. The present study demonstrates that both isotopic and thermodynamic methods applied to clay minerals formed in thrust fault are useful to help constrain diagenetic and low-grade metamorphic conditions.  相似文献   

16.
《Journal of Structural Geology》1999,21(8-9):1219-1227
Reaction-softening by mineralogical changes from feldspars to sericite has been documented from many fault zones. During external crystalline basement deformation in the Alpine orogeny, the Ser Barbier thrust and splay faults in the Pelvoux Massif experienced ultracataclasis and sericitisation. Microstructural information and geochemical data from the fault rocks suggest that different muscovitisation reactions occurred at different times within the evolution of the fault zone, and each reaction had its own impact on fault rheology. Early cataclasis aided chemical breakdown of orthoclase feldspars to muscovite, yet quartz release accompanying this process resulted in local cementation and consequent hardening of the ultracataclasite. Continued deformation was accompanied by muscovitisation of the albite feldspar, and resulted in the formation of mica-rich fault rocks which experienced progressive silica removal by the fluid with increasing deformation. At this stage, reaction-enhanced ductility dominated. Much of the early cemented ultracataclasites escaped later deformation, and their low permeability allowed preservation of their early geochemical characteristics by preventing later fluid access. Such findings demonstrate how the complex interplay between deformation processes and geochemical reactions may result in a changing rheology during fault zone evolution.  相似文献   

17.
《Gondwana Research》2014,25(1):368-382
The Neoproterozoic Xikou Group is unconformably overlain by the Heshangzhen Group in the eastern Jiangnan orogen, South China. Samples from the Xikou and Heshangzhen Groups have generally intermediate to high SiO2 (53.14–77.48 wt.%, average 65.33 wt.%) and Al2O3 (11.53–27.14 wt.%, average 18.96 wt.%) contents, typical of immature lithic varieties. Compared to the Xikou Group, the Heshangzhen Group has higher Al2O3 (average 21.19 wt.% for the Heshangzhen Group and 18.33 wt.% for the Xikou Group, respectively) and Fe2O3* + MgO (average 9.38 wt.% and 8.86 wt.%) contents, but lower SiO2 (average 59.79 wt.% and 66.91 wt.%) content, suggesting that the Heshangzhen Group has more mafic components. The Chemical Index of Alteration (69–81) and the high Th/U ratios (> 3.8) indicate moderate weathering of the source area. Rare earth element patterns suggest that the source rocks came from an upper continental crust composed chiefly of felsic rocks. Discrimination diagrams reveal a mixed provenance of granitic and felsic volcanic components with minor old sedimentary component.Detrital zircon U–Pb ages and previous geochronological data of granitic plutons indicate that the Xikou and Heshangzhen Groups were deposited at 840–820 Ma and 810–780 Ma, respectively. The Xikou Group was deposited in a back–arc basin and its source rocks came mainly from the Yangtze Block. The Heshangzhen Group formed in a post-orogenic setting with a provenance of the Yangtze Block and the Shuangxiwu arc. The Jiangnan orogen was built at 820–810 Ma after the final suturing between the Yangtze and the Cathaysia Blocks. This orogen collapsed shortly following the collision (within 10–20 million years) and formed the Dexing–Huangshan normal fault zone.  相似文献   

18.
19.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   

20.
A study based on computation of D-function anomalies (method of joint gravity and magnetic data analysis) along profiles in the Bering Sea has been performed in both the Aleutian Basin with oceanic crust and the Bering continental shelf. This study revealed extended faults that affect not only the Earth’s crust but also the upper mantle. This is supported by seismic profiling. The calculated palinspastic reconstructions of the position of North America relative to “immobile” Eurasia 80, 52–50, 50–47, and 15–20 Ma ago allowed us to show that the revealed strike-slip faults are probable relics of an echeloned transform boundary between the Eurasian and North American lithospheric plates. The formation of this boundary beginning from the Late Cretaceous was apparently related to opening of the North Atalantic, which determined the large rate of displacement of North America relative to Eurasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号