首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper evaluates the commonly used substructuring method for analysis of bridge systems where the bridge is divided into two sub-systems: the bridge superstructure and the substructure including the pile foundations, abutments, and soil. Modeling of the soil-structure interaction (SSI) in the system is simplified by replacing the pile foundations, abutments, and soil with sets of independent equivalent linear springs and dashpots at the base of the superstructure. The main objective of the paper is to examine how well the substructuring method simulates the seismic response of a bridge system. The baseline data required for the evaluation process is derived from analyzing a fully-coupled continuum bridge model, already validated for the instrumented two-span Meloland Road Overpass. The same bridge system is also simulated using the substructuring method. The results from both approaches are compared, and it is shown that the differences between them can be significant. The substructuring method consistently overestimates the pier base shear forces and bending moments and the pier top deflections. Moreover, the spectral response of the bridge structure is mispredicted. The analyses are repeated for a three-span bridge system subjected to several ground motions, leading to a similar observation as before. Hence, the current state of practice for simulating seismic SSI in bridges using the substructure model is shown to be too simplified to capture the major mechanisms involved in SSI.  相似文献   

2.
A methodology using modal analysis is presented to evaluate dynamic displacements of a circular flexible foundation on soil media subjected to vertical vibration. The interaction effects between the foundation and the underlying soil are represented using modal soil impedance functions determined by an efficient procedure developed. The displacements of the foundation can then be easily solved by modal superposition. Comparing with existing solutions, the presented method is found to provide accurate results with less computational effort using only a few vibration modes. In addition, parametric studies for modal responses of the flexible foundation indicate that the response of the foundation are significantly influenced by relative stiffness between the foundation and the soil medium, load distributions, vibration frequency range, and the foundation mass. Besides, justification for flexible foundations to be considered as rigid are investigated.  相似文献   

3.
This article demonstrates how system identification techniques can be successfully applied to a soil-structure interaction system in conjunction with the results of the forced vibration tests on the Hualien large-scale seismic test structure which was recently built in Taiwan for an international joint research. The parameters identified are the shear moduli of several near-field soil regions as well as Young's moduli of the shell sections of the structure. The soil-structure interaction system is represented by the finite element method combined with infinite element formulation for the unbounded layered soil medium. Preliminary investigations are carried out on the results of the static stress analysis for the soil medium and the results of the in-situ tests to divide the soil-structure system into several regions with homogeneous properties and to determine the lower and upper bounds of the parameters for the purpose of identification. Then two sets of parameters are identified for two principal directions based on the forced vibration test data by minimizing the estimation error using the constrained steepest descent method. The simulated responses for the forced vibration tests using the identified parameters show excellent agreement with the test data. The present estimated parameters are also found to be well compared with the average value of those by other researchers in the joint project.  相似文献   

4.
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.  相似文献   

5.
This paper presents a static equivalent approach to estimate the maximum kinematic interaction effects on piles subjected to lateral seismic excitation. Closed-form expressions are reported for the evaluation of the maximum free-field soil movements and for the computation of maximum pile shear force and bending moments. Firstly, modal analysis, combined with a suitable damped response spectrum, is used to evaluate the maximum free-field response. Secondly, the pile is schematised as a Winkler's beam subjected to equivalent static forces defined according to soil vibration modal shapes and amplitude. The method may be applied by using response spectra suggested by National Standards or those obtained with accelerograms. The procedure proposed may be conveniently implemented in simple spreadsheets or in commercial finite element programs and easily used by practicing engineers. Method accuracy is demonstrated by comparing the results with those obtained with a more rigorous model. Good results may be achieved by considering only the first soil vibration mode making the procedure straightforward for practical design purposes.  相似文献   

6.
张昊  康帅  王自法    裴笑娟 《世界地震工程》2022,38(2):029-37
目前结构的抗震分析主要是采用刚性地基假定,忽略了土-结构相互作用,而在实际情况中结构的地震破坏与刚性地基假定的预期结果并不相同。为了对比差异,本文以一6层混凝土框架结构为例,分别进行了Pushover分析和非线性时程分析。结果表明:当考虑土-结构相互作用时,结构的基底剪力减小,周期增大,顶点位移增大且结构的破坏主要集中在首层,柱端出现了塑性铰,更符合实际的震害情况。并将Pushover分析与非线性时程分析的结果进行对比,验证了Pushover分析的可靠性。  相似文献   

7.
Studies of the effects of differential ground motions on structural response generally do not consider the effects of the soil-structure interaction. On the other end, studies of soil-structure interaction commonly assume that the foundation of the structure (surface or embedded) is rigid. The former ignore the scattering of waves from the foundation and radiation of energy from the structure back to the soil, while the latter ignore quasi-static forces in the foundations and lower part of the structure deforming due to the wave passage. This paper studies a simple model of a dike but considers both the soil-structure interaction and the flexibility of the foundation. The structure is represented by a wedge resting on a half-space and excited by incident plane SH-waves. The structural ‘foundation’ is a flexible surface that can deform during the passage of seismic waves. The wave function expansion method is used to solve for the motions in the half-pace and in the structure. The displacements and stresses in the structure are compared with those for a fixed-base model shaken by the free-field motion. The results show large displacements near the base of the structure due to the differential motion of the base caused by the wave passage.  相似文献   

8.
A time domain transient analysis of a concrete gravity dam and its foundation has been carried out in a coupled manner using finite element technique and the effect of Soil-Structure Interaction (SSI) has been incorporated using a simplified direct method. A two dimensional plane strain dam-foundation model has been used for the time history analysis to compute the stresses and displacements against earthquake loading considering the effect of soil-structure interaction. An effective boundary condition has been implemented by attaching dashpots to the vertical boundaries. The material damping effects have also been considered and the dam and foundation have both been modeled as linear, elastic materials. To achieve a greater degree of accuracy, the displacements and stresses calculated in the free-field analysis have also been added to those developed in the complete dam-foundation analysis. The proposed algorithm has been simulated for the case of two published problems and in both the cases the results have been found to be in close agreement. The proposed technique is quite simple and easy to implement in the computer code. The outcomes of the results show the efficacy of the developed method.  相似文献   

9.
本文研究水平地震作用下桩-土体系中桩基的地震反应,为桩基的抗震设计提供依据。以单桩为研究对象,建立有限元分析模型并加以验证,再根据场地条件选取输入波,分析了桩、桩-均匀土体、桩-分层土体3种模型处于弹性和弹塑性状态下的桩基的变形特性和受力性能。研究表明,桩动力分析时必须考虑桩周土的影响,若按静力法的桩-弹簧模型进行桩的设计会使桩身不安全。  相似文献   

10.
土-结构相互作用地震反应分析软件及其二次开发   总被引:1,自引:0,他引:1  
本文简要介绍了目前在土-结构相互作用分析中常用的有限元软件ANSYS7.0、FLAC和MSC.M arc,通过比较评价其各自优缺点和适用性后,根据高层建筑结构土-结构相互作用地震反应分析的特点,建议利用带有灵活接口的大型非线性有限元分析软件MSC.M arc作为其分析工具,并尝试对MSC.M arc进行二次开发,将多层土E-B本构关系模型作为子程序加入其中。  相似文献   

11.
土-结构动力相互作用研究综述   总被引:5,自引:0,他引:5  
土与结构动力相互作用是当代力学领域的前沿性研究课题,具有很强的实践性。对土与结构动力相互作用的研究历史与现状进行了介绍,简要综述了当前土与结构动力相互作用的研究方法,重点介绍了目前关于土与结构动力相互作用问题中从无限域转化成有限域的人工边界研究进展问题,并对该领域今后的研究工作提出了建议。  相似文献   

12.
考虑土-结构相互作用的高层建筑抗震分析   总被引:17,自引:0,他引:17  
本文采用通用有限元程序ANSYS,针对上海地区一例土-箱基-高层建筑结构进行了三维有限元分析,计算中土体的本构模型采用等效线性模型,利用粘一弹性人工边界作为土体的侧向边界,并研究了土体边界位置、土性、基础埋深、基础形式以及上部结构刚度等参数对动力相互作用体系动力特性及地震反应的影响。  相似文献   

13.
This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier–Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589–605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541–51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775–84].  相似文献   

14.
用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法   总被引:37,自引:6,他引:37  
本文以结构-地基动力相互作用振动台模型试验为基础,结合通用有限元软件ANSYS,对结构-地基动力相互作用体系进行有限元计算建模的一些问题作了研究,主要包括柔性土容器的模拟、土体动力本构模型的选用、土体与结构交界面上的状态非线性模型、网格划分、重力的考虑、结构中钢筋的处理以及对称性的应用等。文中给出了利用上述建模方法对结构-地基动力相互作用体系进行计算的一些加速度时程结果,并与试验结果相对照,吻合较好。通过计算分析,验证了简化处理方法的合理性和计算模型的可行性。  相似文献   

15.
The contribution of modal interaction in the various available spectrum superposition methods is accounted via the modal cross-correlation coefficient, which has been defined in several different approximate ways. Further, in these methods, to define the final expressions directly in terms of the response spectrum amplitudes, the peak factors for all the modal responses are approximated to be equal to the peak factor for the total structural response. However, these assumptions have been found to be violated significantly in many cases and do not hold good in general. Therefore, some recent studies have attempted to improve upon these assumptions. In this paper, detailed investigations are made to study the relative performance of the various available methods considering the modal interaction effects. To find out which of the available methods, in general, gives the better results, the response of a five-storey asymmetric hypothetical building, characterized by significant interaction effects, has been computed from different methods for several widely differing input excitations and the results have been compared with the exact time-history solution.  相似文献   

16.
三维土-结构动力相互作用的一种时域直接分析方法   总被引:1,自引:0,他引:1  
本文提出了一种分析三维土-结构动力相互作用的时域直接方法。该方法采用集中质量显式有限元和透射人工边界模拟无限域地基,通过编制的FORTRAN程序实现;采用ANSYS软件对上部结构进行建模分析,并通过FORTRAN程序对ANSYS软件的调用,实现了土与结构系统在地震作用下的整体分析。该方法为显隐式相结合的方法,地基和上部结构可采用不同的时间步距进行分析,可大大提高效率。通过两算例,验证了该方法的可行性。  相似文献   

17.
This is the second paper of two, which describe the results of an integrated research effort to develop a four-step simplified approach for design of raft foundations against dip-slip (normal and thrust) fault rupture. The first two steps dealing with fault rupture propagation in the free-field were presented in the companion paper. This paper develops an approximate analytical method to analyze soil-foundation-structure interaction (SFSI), involving two additional phenomena: (i) fault rupture diversion (Step 3); and (ii) modification of the vertical displacement profile (Step 4). For the first phenomenon (Step 3), an approximate energy-based approach is developed to estimate the diversion of a fault rupture due to presence of a raft foundation. The normalized critical load for complete diversion is shown to be a function of soil strength, coefficient of earth pressure at rest, bedrock depth, and the horizontal position of the foundation relative to the outcropping fault rupture. For the second phenomenon (Step 4), a heuristic approach is proposed, which "scans" through possible equilibrium positions to detect the one that best satisfies force and moment equilibrium. Thus, we account for the strong geometric nonlinearities that govern this interaction, such as uplifting and second order (P-△) effects. Comparisons with centrifuge-validated finite element analyses demonstrate the efficacy of the method. Its simplicity makes possible its utilization for preliminary design.  相似文献   

18.
During the past strong ground motions, chimneys constructed according to international standards are representative of similar structures at industrial areas throughout the world, including those collapsed or moderately damaged in earthquake-prone regions. This is due to the specialty of structural characteristics and the special loads acting on the structure such as earthquakes, wind and differences in the level of temperature, etc. In this context, the researchers and designers should focus on the dynamic behavior of chimneys especially under high temperature and seismic effects. For this purpose, the main focus of this study is to evaluate the dynamic response of a chimney under the above-mentioned effects considering soil-structure interaction (SSI). A 52 m steel chimney in Yeşilyurt township of Samsun City in Turkey was studied. The in-situ model testing and numerical models were compared. Before the commissioning of the chimney, a series of tests was realized to define its dynamic characteristics in case of no-heat and after the fabric got to work, the same tests were repeated for the same sensor locations to understand the heat effect on the dynamic response of the chimney. The ambient vibration tests are proven to be fast and practical procedures to identify the dynamic characteristics of those structures. The dynamic testing of the towers promises a widespread use, as the identification of seismic vulnerability of such structures becomes increasingly important. The data presented in this study are considered to be useful for the researchers and engineers, for whom the temperature and SSI effects on steel chimneys are a concern. Using the modal analysis techniques, presented finite element simulation for the soil/pile foundation-chimney interaction system is verified. The results of modal analyses using numerical solutions are shown to have acceptable accuracy compared with results obtained by in-situ test. The present study also aims to provide designers with material examples about the influence of these on the seismic performance of steel chimneys by means of reflecting the changes in the dynamic behavior.  相似文献   

19.
本文通过对高层建筑结构-地基动力相互作用体系和刚性地基上高层建筑结构的振动台模型试验成果的对比分析,研究了相互作用对结构动力特性和地震反应的影响。结果-地基动力相互作用使结构频率减小,阻尼增大;相互作用体系的振型曲线与刚性地基上结构的振型曲线不同,基础处存在平动和转动;在地震动作用下考虑相互作用的结构加速度、层间剪力、弯矩以及应变通常比刚性地基上的情况小,而位移则比刚性地基上的情况大。  相似文献   

20.
针对核电厂结构,在考虑土-结构相互作用(SSI)的情况下进行随机地震反应分析,探讨地基岩土参数的不确定性对反应堆厂房楼层反应谱(FRS)的影响。运用ANSYS软件模块建立核电厂(NPP)结构有限元模型,通过设置边界弹簧单元和阻尼装置来考虑SSI效应;并且通过设置具有概率意义的弹簧刚度和阻尼系数,来模拟土特性参数的不确定性。随机响应分析与确定性分析的结果对比,揭示了岩性地基条件下SSI效应对核电厂FRS的影响以及地基岩土参数不确定性对FRS的影响程度。研究表明,在岩性地基条件下,亦不应忽略SSI效应;考虑SSI效应的随机分析模型同确定性模型相比,二者的分析结果较为接近,两方法都可用于NPP的FRS敏感性分析评估之中,并可进行相互比照。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号