首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many remedial measures have been devised to lessen the damage caused by expansive soils. Physical alteration, chemical stabilization, innovative foundation techniques like belled piers, drilled piers, under-reamed piles and granular pile anchors are some of these remedial measures. Mixing a non swelling material such as gravel or sand to expansive soil is one of the methods of physical alteration. This paper presents experimental data on artificially prepared sand-clay mixes. Swell and consolidation characteristics of these artificially prepared sand-clay mixes were studied in one dimensional consolidometer. Fine sand content and fines content in the expansive soil were arbitrarily varied in the investigation. The fines content was varied as 425–300 μm and 150–75 μm, separated from the same expansive soil based on the grain size. Swell potential and swelling pressure decreased with increasing fine sand content but increased with increasing fines content. Coefficient of compressibility, coefficient of volume compressibility and compression index of the samples decreased initially up to a sand content of 15% and thereafter increased at higher sand contents.  相似文献   

2.
ABSTRACT

Micaceous soil is believed to be detrimental for civil engineering constructions due to the effect of high compressibility, low compacted density and low shear strength. Individual mica particle has numerous intact mica flakes foliated over each other making it flexible upon loading and rebound upon unloading due to its low hardness and resilient nature. Hence, micaceous soils with mica content more than 10% are considered undesirable for highway pavements, embankments and railway track constructions. When platy mica particles are sufficiently numerous to interact with spherical sand particles, bridging and ordering phenomena are augmented within the soil mass creating unique sand-mica particle orientation (MS microstructure) unlike sand-sand particle orientation (PS microstructure). The current experimental research was conducted to evaluate the variation in stress–strain, pore pressure and effective stress path response of Sabarmati sand under the influence of mica (sand with 30% mica and pure sand) with MS and PS microstructure respectively. Effect of particle crushing on stress–strain and pore pressure response was also studied on Sabarmati sand with MS and PS microstructure. Distinctive macroscopic response was observed in Sabarmati sand with MS microstructure under the influence of mica as well as mica particle crushing.  相似文献   

3.
Use of scrap tyres in isolation systems for seismic damping, requires a knowledge of the engineering properties of sand–rubber mixtures (SRM). The primary objective of this study is to assess the influence of granulated rubber and tyre chips size and the gradation of sand on the strength behaviour of SRM by carrying out large-scale direct shear tests. A large direct shear test has been carried out on SRM considering different granulated rubber and tyre chip sizes and compositions. The following properties were investigated to know the effect of granulated rubber on dry sand; peak shear stress, cohesion, friction angle, secant modulus and volumetric strain. From the experiments, it was determined that the major factors influencing the above-mentioned properties were granulated rubber and tyre chip sizes, percentage of rubber in SRM and the normal stress applied. It was observed that the peak strength was significantly increased with increasing granulated rubber size up to rubber size VI (passing 12.5 mm and retained on 9.5 mm), and by adding granulated rubber up to 30%. This study shows that granulated rubber size VI gives maximum shear strength values at 30% rubber content. It was also found that more uniformly graded sand gives an improved value of shear strength with the inclusion of granulated rubber when compared to poorly graded sand.  相似文献   

4.
Won  Jongmuk 《Acta Geotechnica》2022,17(10):4667-4680
Acta Geotechnica - This study investigated the microscale assessment of the stability of fine particles from calculated hydrodynamic and adhesive torques of attached fine particles on sand...  相似文献   

5.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   

6.
Kim  Sang Yeob  Lee  Jong-Sub 《Acta Geotechnica》2020,15(4):947-961
Acta Geotechnica - Previously, in situ tests have been conducted in cold regions since infrastructures such as pipelines have been actively built on frozen ground. However, the engineering...  相似文献   

7.
Feng  Wei-Qiang  Li  Chao  Yin  Jian-Hua  Chen  Jian  Liu  Kai 《Acta Geotechnica》2019,14(6):2065-2081

In most marine reclamation projects, sand fill is placed directly on soft marine seabed soils. The sand particles can easily penetrate into the soft marine soils, and the soft soil can also move into the pore spaces inside the sand at the initial contact interface between the sand and the soft marine soil. In this case, the permeability and the volume of the sand above the initial surface are reduced. To avoid this problem, a geotextile separator is often placed on the surface of the soft marine soils before placing the sand. In this study, a two-dimensional physical model is utilized to study the geotextile separator effects. The initial conditions of a clayey soil, sand fill, and surcharge loading were kept the same in the physical model test with the only difference being that a geotextile separator was either placed on the clay surface or omitted. The settlements of the initial interface were recorded and compared for the two cases without or with the geotextile separator. The particle size distribution of the soils taken across the interface zone for different time durations was then measured, analyzed, and compared. Based on an analysis of the results, the sand percolation depth was 40 mm and fine particle suffusion was apparent when the sand was placed directly on the marine slurry surface without a geotextile separator. However, when a geotextile separator was used sand percolation was avoided, and the fine particle suffusion was effectively diminished. A relative fine particle fraction is defined to illustrate the migration of fine particles from the clay to the sand soils. The fine particle percentages of the Hong Kong Marine Deposits–sand mixtures were calculated for the cases with and without a geotextile separator using an empirical formula and micromechanical modeling to obtain a better understanding of the effects of geotextile separators in practice.

  相似文献   

8.
Xie  Mingxing  Zheng  Junjie  Cao  Wenzhao  Dong  Xiaoqiang  Yang  Tao  Cui  Lan 《Acta Geotechnica》2022,17(6):2533-2552
Acta Geotechnica - The geosynthetics–sand–clay layered reinforced (GSCLR) structure has wide application prospects due to its massive adoption of the clay. To date, the coordination...  相似文献   

9.
Property and behaviour of sand–pile interface are crucial to shaft resistance of piles. Dilation or contraction of the interface soil induces change in normal stress, which in turn influences the shear stress mobilised at the interface. Although previous studies have demonstrated this mechanism by laboratory tests and numerical simulations, the interface responses are not analysed systematically in terms of soil state (i.e. density and stress level). The objective of this study is to understand and quantify any increase in normal stress of different pile–soil interfaces when they are subjected to loading and stress relief. Distinct element modelling was carried out. Input parameters and modelling procedure were verified by experimental data from laboratory element tests. Parametric simulations of shearbox tests were conducted under the constant normal stiffness, constant normal load and constant volume boundary conditions. Key parameters including initial normal stress ( $ \sigma_{{{\text{n}}0}}^{\prime } $ ), initial void ratio (e 0), normal stiffness constraining the interface and loading–unloading stress history were investigated. It is shown that mobilised stress ratio ( $ \tau /\sigma_{\text{n}}^{\prime } $ ) and normal stress increment ( $ \Updelta \sigma_{\text{n}}^{\prime } $ ) on a given interface are governed by $ \sigma_{{{\text{n}}0}}^{\prime } $ and e 0. An increase in $ \sigma_{{{\text{n}}0}}^{\prime } $ from 100 to 400 kPa leads to a 30 % reduction in $ \Updelta \sigma_{\text{n}}^{\prime } $ . An increase in e 0 from 0.18 to 0.30 reduces $ \Updelta \sigma_{\text{n}}^{\prime } $ by more than 90 %, and therefore, shaft resistance is much lower for piles in loose sands. A unique relationship between $ \Updelta \sigma_{\text{n}}^{\prime } $ and normal stiffness is established for different soil states. It can be applied to assess the shaft resistance of piles in soils with different densities and subjected to loading and stress relief. Fairly good agreement is obtained between the calculated shaft resistance based on the proposed relationship and the measured results in centrifuge model tests.  相似文献   

10.
Sun  Shaorui  Wang  Wuchao  Wei  Jihong  Song  Jinglei  Yu  Yongxiang  He  Wei  Zhang  Jixing 《Natural Hazards》2021,106(3):2845-2861
Natural Hazards - Water pollution has changed the physical and mechanical properties of Xiashu loess, which has become an important factor in the frequent occurrence of Xiashu loess landslides. In...  相似文献   

11.
Wei  Xiao  Liu  Huanzi  Ku  Taeseo 《Acta Geotechnica》2020,15(10):2905-2923
Acta Geotechnica - Cement stabilization is a useful and widely adopted method to improve the engineering properties of soils. However, characterization of the unconfined compressive strength, a...  相似文献   

12.
This paper investigates the fundamental characteristics of shear strength and deformation of crushed oyster shell–sand mixtures to stimulate recycling of waste oyster shells. Standard penetration tests (SPT) and large-scale direct-shear tests were carried out with different kinds of dry unit weight and mixing rate of oyster shell–sand mixture. Correlations between N-value, dry unit weight, and friction angle of mixtures were observed from the results of experimental tests, making it possible to estimate the in situ strength from SPT, and the coefficient of volume compressibility from the confined direct-shear compression test. These results also make it possible to compute the settlement of oyster shell–sand mixture when used in soft ground improvement.  相似文献   

13.
Wang  Dong-Wei  Zhu  Cheng  Tang  Chao-Sheng  Li  Sheng-Jie  Cheng  Qing  Pan  Xiao-Hua  Shi  Bin 《Acta Geotechnica》2021,16(9):2759-2773

Deep geological repository is a favorable choice for the long-term disposal of nuclear wastes. Bentonite–sand mixtures have been proposed as the potential engineered barrier materials because of their suitable swelling properties and good ability to seal under hydrated repository conditions. To investigate the effects of sand grain size on the engineering performance of bentonite–sand mixtures, we prepare five types of bentonite–sand mixtures by mixing bentonite with sand of varying particle size ranges (0.075–0.25 mm, 0.25–0.5 mm, 0.5–1 mm, 1–2 mm and 2–5 mm, respectively). We carry out sequential oedometer tests under different simulated repository conditions, including constant vertical stress (CVS), constant stiffness (CS) and constant volume (CV) conditions. The microstructural heterogeneity and anisotropy of these soil mixtures are characterized through the quantitative analysis of micro-CT scanning results. Experimental results reveal that both sand grain size and boundary condition significantly influence the swelling of soil mixtures. Under three conditions, the temporal evolutions of swelling stress and strain follow similar trends that they increase faster at the beginning and gradually stabilize afterward. Comparing the ultimate values, swelling strains follow CVS?>?CS?>?CV, while swelling stresses follow CV?>?CS?>?CVS. Under CS boundary conditions, as the stiffness coefficient increases, the swelling pressure increases and the swelling strain decreases. CT results further indicate that mixtures with larger sand inclusions are more structurally heterogeneous and anisotropic, resulting in increased inter-particle friction and collision and a higher energy dissipation during the swelling process. Moreover, the non-uniform distribution of bentonite in local zones would be intensified, which plays an important role in compromising swelling behavior. Therefore, soil samples mixed with larger sand particles present a smaller swelling stress and strain values. This study may guide the choice of engineered barrier materials toward an improved design and assessment of geological repository facilities.

  相似文献   

14.
In this paper, a simple bounding surface plasticity model is used to reproduce the yielding and stress–strain behavior of the structured soft clay found at Shanghai of China. A series of undrained triaxial tests and drained stress probe tests under isotropic and anisotropic consolidation modes were performed on undisturbed samples of Shanghai soft clay to study the yielding characteristics. The degradation of the clay structure is modeled with an internal variable that allows the size of the bounding surface to decay with accumulated plastic strain. An anisotropic tensor and rotational hardening law are introduced to reflect the initial anisotropy and the evolution of anisotropy. Combined with the isotropic hardening rule, the rotational hardening rule and the degradation law are incorporated into the bounding surface formulation with an associated flow rule. Validity of the model is verified by the undrained isotropic and anisotropic triaxial test and drained stress probe test results for Shanghai soft clay. The effects of stress anisotropy and loss of structure are well captured by the model.  相似文献   

15.
Suspended sediments present in the flow are known to affect the flow resistance, velocity distribution and turbulent characteristics. Experiments were conducted in the laboratory flume to see the effect of suspended sediment concentration (SSC) on local scour around a cylindrical pier for a wide range of clay–sand mixed sediment beds for SSC up to 2700 mg/L. It has been observed that the effect of SSC on equilibrium scour hole parameters such as maximum equilibrium scour depth, and longitudinal and transverse extent of scour hole can be significant. Present data showed that the presence of SSC in the range 993–1332 mg/L can increase maximum equilibrium scour depth as much as 1.54 times compared to the clear water case. However, tests made for SSC in the range 2456–2700 mg/L showed that the maximum equilibrium scour depth reduced compared to that for SSC in the range 993–1332 mg/L, but these maximum equilibrium scour depths were still larger than that obtained for clear water. The effect of SSC on time variation of scour and equilibrium scour hole geometry was further investigated.  相似文献   

16.
The loess–paleosol deposit in Central Asia is a sensitive indicator of the evolution of the quaternary paleoclimate in the Westerlies, providing insight into the quaternary climate history and its relationship with global climatic changes. Based on the geochemical analysis of elemental composition of densely sampled strata from Talede loess–paleosol sequence in the Ili Basin, the results showed that SiO2 had the highest major elements content, followed by Al2O3. The order of compositional abundance of major elements was generally as follows: SiO2 > Al2O3 > CaO > Fe2O3 > MgO > Na2O > K2O. Trace elements (i.e. Rb, Sr, Sc, Ni, Cu, Ga, Mo, Y, Pb, Th) in the paleosol layers (i.e. S 0, S m, S 1) and the loess layer of L 1 were enriched relative to underlain loess (L 2) horizons, except for the contents of Zr, Cs, Nd, and La in paleosol layers. All of geochemical proxies, such as enrichment factor, Rb/Sr ratio, eluvial coefficient (K i ) and chemical weathering index, display no obvious differentiation in the Talede loess–paleosol deposit. The results indicate that the weak chemical weathering, greater evaporation and low effective moisture in Ili Basin, are to a degree weaker than those in the China Loess Plateau and the climate was warm–dry during the interglacial period. In addition, the loess of Ili area is rich in schistose minerals and implies that the loess may come from the deserts of Central Asia and it may be closely related to the widespread aridification of Central Asia.  相似文献   

17.
The distribution of frozen soil in our country is very broad, and the area of permafrost alone accounts for 22. 4% of the total land area. As a special kind of soil, frozen soil has many properties that thawing soil does not have due to the influence of ice cement in the soil. Among the many properties of frozen soil, the deformation and strength of frozen soil are the basic problems affecting engineering construction in frozen soil areas. The spherical template indenter test is widely used in the test of the mechanical properties of frozen soil because of its simple test process and relatively accurate test results. Compared with the conventional triaxial test or direct shear test, the test process of the spherical template indenter test is simple and easy to implement, the test period is short, and the sample preparation requirements are low. The advantage of effective cohesion is more significant. Therefore, based on the spherical template indenter test of the frozen soil, this paper estimates the strength and mechanical index of the soil through the indentation depth of the spherical template indenter test, and establishes the relationship between the force of the sample and the indentation depth of the indenter test. The specific test method is as follows:take the water-saturated frozen sandy soil made of different particle size groups(the moisture content of the sample is affected by the particle size in the saturated state)as the research object, study the variation law of the depth of the frozen soil sample pressed into the soil by the spherical indenter with time under the conditions of different fixed loads. By comparing and referring to the frozen sands of each particle size group, the long-term equivalent cohesion of the frozen sands of different particle size groups is summarized. The change law of force(long-term shear strength)with time, and the research method of elastic mechanics to solve space problems, summed up the mutual conversion between the depth St of spherical template indenters pressed into frozen sand samples under different fixed load test conditions relation. The research results show that the long-term shear strength of frozen sand based on the spherical mold test is positively correlated with its particle size. At the same time, since the ice content of frozen soil samples is proportional to its particle size, the long-term shear strength of frozen sand is also proportional to the test. The ice content of the sample increases year-on-year;the long-term shear strength of the frozen sand is related to the maximum contact pressure on the contact surface between the frozen soil and the indenter during the test, which can be expressed as Ct = γq0. The size of the relationship coefficient γ is inversely proportional to the diameter of the spherical indenter. In this paper, the spherical indenter is selected as 22 mm, and γ=3. 82×10-3. By establishing the relationship between the maximum contact pressure q0 and the long-term shear strength Ct When the maximum contact pressure q0 is the same under different fixed loads, the long-term shear strength Ct is also the same. According to this, the depth curve and the freezing depth of the frozen sand pressed into the soil by the spherical indenter over time under different fixed loads can be converted. Long-term shear strength curve of frozen sandy soil with time. It has been verified by experiments that the conversion curve of the depth of the indenter pressed into the soil with time under a fixed load of 7. 0 kg is highly consistent with the measured curve of the depth of the indenter pressed into the soil with time under a fixed load of 5. 1 kg and 7. 0 kg. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

18.
《Journal of Structural Geology》2002,24(6-7):1087-1099
This paper investigates the geometry, microstructure, and c-axis fabrics of an outcrop scale, micaceous quartzite fold produced under greenschist facies metamorphic conditions in the Moeda quartzite, Quadrilátero Ferrı́fero granite–greenstone terrain, southeastern Brazil. The fold limbs show development of opposed SC fabrics and asymmetric quartz c-axis fabrics compatible with flexural slip along the fold surface. Towards the fold hinge, there is an increasing presence of oblique shear bands (here named S-bands) which gradually change to crenulations within the hinge zone. The oblique S-bands are interpreted to have formed through connection of several S-planes, increasing accommodation of antithetical shear along these S-planes and offset of the initial C-planes at intermediate stages of folding. This mechanism represents a kinematic inversion in the role played by the two sets of foliations in SC structures. Our observations support flexural slip for early stages of folding. However, with progressive closure of the fold, the flexural slip mechanism involves increasing contributions from oblique shear on the S-bands, thus approximating an intermediate situation between flexural slip and passive folding (shear parallel to the axial plane).  相似文献   

19.
The authors analyze the geodynamic settings of large fields of spodumene pegmatites hosting Li and complex (Li, Cs, Ta, Be, and Sn) deposits of rare metals within the Central Asian Fold Belt. Most of the studied fields show a considerable time gap (from few tens of Myr to hundreds of Myr) between the spodumene pegmatites and the associated granites, which are usually considered parental. This evidence necessitates recognition of an independent pegmatite stage in the magmatic history of some pegmatite-bearing structures in Central Asia. The Precambrian–Late Mesozoic interval is marked by a close relationship between the large fields of spodumene pegmatites and extension settings of continental lithosphere. They occur either as (1) zones of long-lived deep faults bordering on trough (rift) structures experiencing the tectonic-magmatic activity or as (2) postcollisional zones of shearing and pull-apart dislocations. Thus, large fields of spodumene pegmatites might serve as indicators of continental-lithosphere extension. Important factors favoring the formation of rare-metal pegmatites both in collision zones and continental-rift settings are the presence of thick mature crust dissected by long-lived, deeply penetrating (down to the upper mantle) fault zones. They ease the effect of deep sources of energy and substance on crustal chambers of granite and pegmatite formation.  相似文献   

20.
Depending on artificial freezing method applied in subway tunnel construction, a series of stress-controlled cyclic triaxial tests were conducted on freezing–thawing mucky clay to investigate their resilient and plastic strain behavior. In terms of practical engineering, this study focuses on three significant influencing factors which are artificial freezing temperatures, dynamic stress amplitude and loading frequency. This study demonstrates how these influence factors effect on the resilient strain or dynamic elastic modulus and accumulated plastic strain which are crucial to better understanding the strain behavior of freezing–thawing soil. The results indicate that the value of freezing temperature has slight influence on dynamic elastic modulus, but the freeze–thaw action can truly decrease the dynamic elastic modulus of soil, and soil with higher freezing temperature possesses larger accumulated axial strain. Besides, the dynamic elastic modulus decreases remarkably with the increasing of the cyclic stress amplitude, while the accumulated plastic strain behaves adversely. In addition, loading frequency has the least effect compared with other two factors, but lower frequency can generate larger accumulated plastic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号