首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Tianhu Fe deposit (> 104 Mt at 42% TFe) in the Eastern Tianshan (NW China) is hosted in the schist, quartzite, marble, and amphibolite of the Neoproterozoic Tianhu Group. The deposit consists of disseminated, banded and massive ores. Metallic minerals are dominantly magnetite and pyrite, with minor titanite, pyrrhotite, chalcopyrite, and sphalerite. Gangue minerals include dolomite with minor forsterite, diopside, apatite, biotite, chlorite, tourmaline, tremolite, talc, calcite, and magnesite. Pyrite separates from ores have 10.7 to 54.7 ppb Re and 0.033 to 0.175 ppb common Os. Those from the massive ores have a model 1 isochron age of 535 ± 36 Ma (2σ), in agreement with the isochron age (528 ± 18 Ma) of pyrite from the banded ores by regression of seven Re–Os analyses. The Re–Os age of ~ 530 Ma reflects the timing of a hydrothermal event that remobilized the Tianhu deposit. Magnetite has Mg, Al, Ti, V, Mn, Zn, and Ga contents ranging from ~ 5 to 3500 ppm and Cr, Co, Ni, and Sn contents ranging from ~ 1 to 200 ppm. Most magnetite grains have Ca + Al + Mn and Ti + V contents similar to those of the banded iron formation (BIF). Some grains have elevated Ti and V contents, indicating that that magnetite was formed by sedimentary process and overprinted by hydrothermal activity. Pyrite has δ34SCDT values from − 9.23 to 10.96‰, indicating that the sulfur was reduced from the marine sulfates either by bacterial or thermochemical processes. Pyrite has relatively high Co (~ 346 to 3274 ppm) but low Ni (~ 5.6 to 35.4 ppm) with Co/Ni ratios ranging from ~ 10 to 270, indicating remobilization from a volcanic–hydrothermal fluid. Therefore, the Tianhu Fe deposit was originally a sedimentary type deposit but was overprinted by a hydrothermal event related to volcanic activity.  相似文献   

2.
Sedimentary pyrites in black shales contain abundant trace elements that provide information on the chemistry of the seawater at the time of sedimentation. This study focuses on the Barney Creek Formation (~ 1640 Ma) in the McArthur Basin in the Northern Territory of Australia, which is host to one of the world's largest SEDEX Zn-Pb-Ag deposits, and several smaller deposits. Fine-grained sedimentary pyrite has been sampled from three drill holes through the Barney Creek Formation at various distances from SEDEX mineralisation. Samples were selected through the stratigraphy of each hole and analysed by LA-ICPMS for a suite of 14 trace elements. The data show that sedimentary pyrite at the base of the Barney Creek Formation, closest (within 1 km) to SEDEX mineralisation, is strongly enriched in Zn and Tl by one to two orders of magnitude compared to the global average for sedimentary pyrite. In contrast sedimentary pyrite from the hole furthest from SEDEX mineralisation (~ 60 km) contains mean Zn and Tl values equal to, or less than, the global average. Based on the three drill hole pyrite data sets it is concluded that trace elements that are contributed to the basin during hydrothermal exhalation, and adsorbed into contemporaneous sedimentary pyrite, are principally Zn, Tl, Cu, Pb, Ag and As. In contrast, trace elements that are adsorbed into sedimentary pyrite from background seawater are principally Mo, Ni, Co, Se and As. These differences have enabled the development of a SEDEX fertility diagram for sedimentary basins, based on the composition of sedimentary pyrite, that distinguish high Zn, but barren shales, from high zinc SEDEX-related shales. In parallel with the increase in Zn and Tl in sedimentary pyrite approaching mineralisation there is a decrease in Ni, Co and Mo. This means that the ratios Zn/Ni and Tl/Co are particularly good pyrite vectors to SEDEX mineralisation in the McArthur Basin, varying over 4 to 6 orders of magnitude from barren shales to mineralised shales. It is speculated that the reason for the reverse relationship between Ni, Co and Zn, Tl may be caused by hydrothermal exhalations into the water column that effect the ion-exchange pyrite surface complexation processes that alter the uptake of these elements into sedimentary pyrite.Another important conclusion of this study is that hydrothermal exhalations into a sedimentary basin may affect the redox sensitive trace element chemistry of sedimentary pyrite and therefore the trace element chemistry of pyritic black shales. Nickel, Co and Mo all decrease in proximity to hydrothermal vents that form SEDEX deposits, whereas Zn, Tl and Pb increase. Selenium and bismuth are the only redox sensitive trace elements that appear to be unaffected by hydrothermal activity in the McArthur Basin. This has implications on how trace element concentrations of black shales and pyrite are used to reflect past global ocean chemistry.  相似文献   

3.
Retrograde hydrous metamorphism has produced three types of microstructures in chromite grains from chromitites and enclosing rocks of the Tapo Ultramafic Massif (Central Peruvian Andes). In semi-massive chromitites (60–80 vol% chromite), (i) partly altered chromite with homogeneous cores surrounded by lower Al2O3 and MgO but higher Cr2O3 and FeO porous chromite with chlorite filling the pores. In serpentinites (ii) zoned chromite with homogeneous cores surrounded by extremely higher Fe2O3 non-porous chromite and magnetite rims, and (iii) non-porous chromite grains. The different patterns of zoning in chromite grains are the consequences of the infiltration of reducing and SiO2-rich fluids and the subsequent heterogeneous interaction with more oxidizing and Fe-bearing fluids. During the first stage of alteration under reduced conditions magmatic chromite is dissolved meanwhile new metamorphogenic porous chromite crystallizes in equilibrium with chlorite. This reaction that involves dissolution and precipitation of minerals is here modeled thermodynamically for the first time. µSiO2-µMgO pseudosection calculated for unaltered semi-massive chromitites at 2 kbar and 300 °C, the lowest P-T conditions inferred from the Tapo Ultramafic Massif and Marañón Complex, predicts that chromite + chlorite (i.e., partly altered chromite) is stable instead of chromite + chlorite + brucite at progressive higher µSiO2 but lower µMgO. Our observation is twofold as it reveals that the important role of SiO2 and MgO and the open-nature of this process. P-T-X diagrams computed using the different P-T pathways estimated for the enclosing Tapo Ultramafic Massif reproduce well the partial equilibrium sequence of mineral assemblages preserved in the chromitites. Nevertheless, it is restricted only to the P-T conditions of the metamorphic peak and that of the latest overprint. Our estimations reveal that a high fluid/rock ratio (1:40 ratio) is required to produce the microstructures and compositional changes observed in the chromitites from the Tapo Ultramafic Massif. The circulation of SiO2-rich fluids and the mobilization of MgO from the chromitite bodies are linked with the formation of garnet amphibolites and carbonate-silica hydrothermalites (i.e., listwaenites and birbirites) in the ultramafic massif. The origin of these fluids is interpreted as a result of the dissolution of orthopyroxene and/or olivine from the metaharzburgites and metagabbros enclosed in the Tapo Ultramafic Massif.  相似文献   

4.
The large, newly discovered Sharang porphyry Mo deposit and nearby Yaguila skarn Pb–Zn–Ag (–Mo) deposit reside in the central Lhasa terrane, northern Gangdese metallogenic belt, Tibet. Multiple mineral chronometers (zircon U–Pb, sericite 40Ar–39Ar, and zircon and apatite (U–Th)/He) reveal that ore-forming porphyritic intrusions experienced rapid cooling (> 100 °C/Ma) during a monotonic magmatic–hydrothermal evolution. The magmatic–hydrothermal ore-forming event at Sharang lasted ~ 6.0 Myr (~ 1.8 Myr for cooling from > 900 to 350 °C and ~ 4.0 Myr for cooling from 350 to 200 °C) whereas cooling was more prolonged during ore formation at Yaguila (~ 1.8 Myr from > 900 to 500 °C and a maximum of ~ 16 Myr from > 900 to 350 °C). All porphyritic intrusions in the ore district experienced exhumation at a rate of 0.07–0.09 mm/yr (apatite He ages between ~ 37 and 30 Ma). Combined with previous studies, this work implies that uplift of the eastern section of the Lhasa terrane expanded from central Lhasa (37–30 Ma) to southern Lhasa (15–12 Ma) at an increasing exhumation rate. All available geochronologic data reveal that magmatic–hydrothermal–exhumation activities in the Sharang–Yaguila ore district occurred within four periods of magmatism with related mineralization. Significant porphyry-type Mo mineralization was associated with Late Cretaceous–Eocene felsic porphyritic intrusions in the central Lhasa terrane, resulting from Neotethyan oceanic subduction and India–Asia continental collision.  相似文献   

5.
In this paper, we present U–Pb ages and trace element compositions of titanite from the Ruanjiawan W–Cu–Mo skarn deposit in the Daye district, eastern China to constrain the magmatic and hydrothermal history in this deposit and provide a better understanding of the U–Pb geochronology and trace element geochemistry of titanite that have been subjected to post-crystallization hydrothermal alteration. Titanite from the mineralized skarn, the ore-related quartz diorite stock, and a diabase dike intruding this stock were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Titanite grains from the quartz diorite and diabase dike typically coexist with hydrothermal minerals such as epidote, sericite, chlorite, pyrite, and calcite, and display irregular or patchy zoning. These grains have low LREE/HREE and high Th/U and Lu/Hf ratios, coupled with negative Eu and positive Ce anomalies. The textural and compositional data indicate that titanite from the quartz diorite has been overprinted by hydrothermal fluids after being crystallized from magmas. Titanite grains from the mineralized skarn are texturally equilibrated with retrograde skarn minerals including actinolite, quartz, calcite, and epidote, demonstrating that these grains were formed directly from hydrothermal fluids responsible for the mineralization. Compared to the varieties from the quartz diorite stock and diabase dike, titanite grains from the mineralized skarn have much lower REE contents and LREE/HREE, Th/U, and Lu/Hf ratios. They have a weighted mean 206Pb/238U age of 142 ± 2 Ma (MSWD = 0.7, 2σ), in agreement with a zircon U–Pb age of 144 ± 1 Ma (MSWD = 0.3, 2σ) of the quartz diorite and thus interpreted as formation age of the Ruanjiawan W–Cu–Mo deposit. Titanite grains from the ore-related quartz diorite have a concordant U–Pb age of 132 ± 2 Ma (MSWD = 0.5, 2σ), which is 10–12 Ma younger than the zircon U–Pb age of the same sample and thus interpreted as the time of a hydrothermal overprint after their crystallization. This hydrothermal overprint was most likely related to the emplacement of the diabase dike that has a zircon U–Pb age of 133 ± 1 Ma and a titanite U–Pb age of 131 ± 2 Ma. The geochronological results thus reveal two hydrothermal events in the Ruanjiawan deposit: an early one forming the Wu–Cu–Mo ores related to the emplacement of the quartz diorite stock and a later one causing alteration of the quartz diorite and its titanite due to emplacement of diabase dike. It is suggested that titanite is much more susceptible to hydrothermal alteration than zircon. Results from this study also highlight the utilization of trace element compositions in discriminating titanite of magmatic and hydrothermal origins, facilitating a more reasonable interpretation of the titanite U–Pb ages.  相似文献   

6.
The Ranger 1 unconformity-related uranium deposit in the Northern Territory of Australia is one of the world's largest uranium deposits and has ranked in the top two Australian producers of uranium in recent years. Mineralisation at the Ranger, Jabiluka and other major unconformity-related deposits in the Alligator Rivers Uranium Field (ARUF) occurs in Paleoproterozoic metamorphic basement rocks immediately beneath the unconformity with the Paleo- to Mesoproterozoic McArthur Basin.The sites of uranium mineralisation and associated alteration at the Ranger 1 deposit (Number 3 orebody) were fundamentally controlled by reactivated shear zones that were initiated during the regional Nimbuwah tectonothermal event. The timing of shearing at medium metamorphic grade was constrained by ion microprobe U–Pb dating of zircons in two pegmatites, one weakly foliated (1867.0 ± 3.5 Ma) and another that is unfoliated and cuts the shear fabric (1862.8 ± 3.4 Ma). The younger age of ~ 1863 Ma represents the minimum age of D1 shearing during the Nimbuwah event at the Ranger 1 deposit (Number 3 orebody). Titanite within veins of amphibole-plagioclase-apatite yielded an ion microprobe U–Pb age of 1845.4 ± 4.2 Ma, which represents a previously unrecognised hydrothermal event in the ARUF. Based on previous data, retrograde hydrothermal alteration during D2 reactivation of D1 shear zones is interpreted to have occurred at ~ 1800 Ma during the regional Shoobridge tectonothermal event.Detailed paragenetic observations supported by whole-rock geochemical data from the Ranger 1 deposit (Number 3 orebody) reveal a sequence of post-D2 hydrothermal events, as follows. (1) Intense magnesium-rich chlorite alteration and brecciation, focussed within schists of the Upper Mine Sequence in the Cahill Formation. (2) Silicification of Lower Mine Sequence carbonate rock units and overlying schist units, comprising quartz ± Mg-foitite (tourmaline) ± muscovite ± pyrite ± marcasite, and rare uraninite (early U1). (3) Formation of main stage uranium ore and heterolithic breccias including clasts of olivine–phyric dolerite, with breccia matrix composed of uraninite (U1), Mg-chlorite ± Mg-foitite and minor pyrite and chalcopyrite. (4) A second generation of uraninite (U2) veinlets with disordered graphitic carbon and quartz of hydrothermal origin. (5) Late-stage veinlets of massive uraninite (U3). As inferred in a previous study and confirmed herein, olivine–phyric dolerite dykes at Ranger are mineralised and chloritised, and are geochemically similar to the regional Oenpelli Dolerite. A maximum age for uranium mineralisation at the Ranger 1 deposit is therefore set by the age of the Oenpelli Dolerite (~ 1723 Ma).In-situ ion microprobe U–Pb analysis of texturally oldest U1 uraninite yielded a discordia array with a 206Pb/238U-207Pb/235U upper intercept age of 1688 ± 46 Ma. The oldest individual ion microprobe 207Pb–206Pb age is 1684 ± 7 Ma whereas the oldest age determined by in-situ electron microprobe chemical dating of U1 uraninite is ~ 1646 Ma. Another sample containing both U1 and U2 uraninite yielded discordant data with a 206Pb/238U–207Pb/235U upper intercept age of 1421 ± 68 Ma. When the 207Pb/206Pb ages are considered the data are suggestive of U2 uraninite formation and possible resetting of the U1 age between ~ 1420 Ma and ~ 1040 Ma. All ion microprobe analyses of U1 and U2 uraninite indicate variable and possibly repeated lead loss. In contrast ion microprobe U–Pb dating of the third generation of uraninite (U3) yielded several near-concordant analyses and a 206Pb/238U–207Pb/235U upper intercept age of 474 ± 6 Ma. This age is supported by electron microprobe chemical ages of U3 uraninite between 515 Ma and 385 Ma.The new results constrain the timing of initial uranium mineralisation at the Ranger 1 deposit (Number 3 orebody) to the period ~ 1720 Ma to ~ 1680 Ma, which just overlaps with a previous U–Pb age of 1737 ± 20 Ma for uraninite-rich whole-rock samples. Our results are consistent with individual laser-ICPMS 207Pb/206Pb and chemical ages of uraninite as old as 1690–1680 Ma reported from other deposits and prospects in the ARUF.Whole-rock geochemical data in this study of the Ranger 1 deposit (Number 3 orebody) and in other studies in the ARUF demonstrate that zones of intense chloritisation associated with uranium mineralisation experienced large metasomatic gains of Mg, U, Co, Ni, Cu and S and losses of Si, Na, Ca, Sr, Ba, K, Rb, Y and the light REE. More broadly in the ARUF, a regionally extensive illite–hematite ± kaolinite-bearing ‘paleoregolith’ zone in basement beneath the McArthur Basin exhibits depletion of about half of its uranium as well as major losses in Na, Sr, Pb, Ba and minor losses of Mg. These features together with new petrographic observations suggest this zone is a regional sub-McArthur Basin alteration zone produced by interaction with diagenetic or hydrothermal fluids of primary basinal origin, rather than representing a low-temperature paleo-weathering zone before the deposition of the McArthur Basin, as previously suggested.Based on these results and a synthesis of previous work, a new multi-stage model is proposed for the Ranger 1 ore-forming mineral system that may apply to other major unconformity-related uranium deposits in the ARUF and which may be used for targeting new deposits in the region. As in most recent models, oxidised diagenetic brines within the McArthur Basin are envisaged as crucial in mobilising uranium. However, a different architecture of fluid flow is proposed involving the sub-unconformity regional basement alteration zone as a preferential source of leached uranium. Possibly driven by convection during regional magmatism at ~ 1725–1705 Ma, oxidised basinal brines were drawn downwards and laterally through fault networks and fractures in the regional sub-unconformity alteration zone, leaching uranium from hematite-altered basement rocks. Simultaneously within deeper and lateral parts of the hydrothermal system, Mg-metasomatism produced chloritic alteration and brines with increased acidity and silica content (from the desilicification of the basement rock), analogous to processes described in sub-seafloor hydrothermal systems. Silicification occurred locally (e.g., Ranger deposit) within upflow zones of convective systems due to decreases in temperature and/or pressure of the brines and/or CO2 generation during carbonate dissolution. Interruptions to convection during transient regional extensional or strike-slip tectonic events resulted in generalised lateral and downwards flow of fluids from the McArthur Basin through deepened zones of sub-unconformity alteration, transferring leached uranium into reactivated shear zones within the basement. The main stage of uraninite precipitation at the Ranger deposit and elsewhere in the ARUF is proposed to have occurred between ~ 1720 Ma and ~ 1680 Ma as a result of reduction of oxidised and evolved basin-derived ore fluids during reaction with pre-existing Fe2 +-bearing minerals and/or mixing of the ore fluids with basement-reacted silica-rich brines.A second, volumetrically minor but locally high-grade, stage of uraninite mineralisation was associated with hydrothermal disordered carbon and quartz of presently unknown origin. Available data suggest formation between ~ 1420 Ma and ~ 1040 Ma. Almost a billion years later at ~ 475 Ma, fluids capable of mobilising uranium again resulted in uraninite (U3) deposition as sparse veinlets in the Ranger deposit, representing the first documentation of uranium mineralisation of this age in the region.  相似文献   

7.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. The BIF shows alternating quartz-rich light and magnetite-rich dark bands with magnetite (15–65 vol.%), quartz (25–65 vol.%) and amphibole (15–30 vol.%) constituting the major minerals. Minor garnet, epidote, chlorite, calcite, biotite and pyrite occur locally. The BIF bands are interlayered with amphibolite, hornblende gneiss, biotite quartz schist, garnet biotite schist, biotite gneiss and leptynite, and are intruded by granites. LA-ICP-MS U–Pb dating on zircons separated from the BIF bands and the wallrocks constrains the depositional age as 2240–2193 Ma and metamorphic age as ~ 1864 Ma. The dominant composition of SiO2 + Fe2O3T (average value of 92.3 wt.%) of the BIF bands suggests their formation mainly through chemical precipitation. However, the widely varying contents of major elements such as Al2O3 (0.58–6.99 wt.%), MgO (1.00–3.86 wt.%), CaO (0.22–4.19 wt.%) and trace elements such as Rb (2.06–40.4 ppm), Sr (9.36–42.5 ppm), Zr (0.91–23.6 ppm), Hf (0.04–0.75 ppm), Cr (89.1–341 ppm), Co (2.94–30.4 ppm), and Ni (1.43–52.0 ppm) clearly indicate the incorporation of clastics, especially continental felsic clastics, as also confirmed by the presence of ancient detrital zircons in the BIF bands. When normalized against Post Archean Average Shale (PAAS), the seawater-like signatures of REE distribution patterns, such as LREE depletion, positive La and Y anomalies, and superchondritic Y/Ho ratios (average value of 36.3), support the deposition in seawater. Strong positive Eu anomalies (Eu/Eu*PAAS = 1.14–2.86) also suggest the participation of hydrothermal fluids. In addition, the sympathetic correlation between Cr, Co and Ni as well as the Co + Ni + Cu vs. ∑ REE and the Al2O3 vs. SiO2 relations further indicates that the iron and silica mainly originated from hydrothermal fluids. Combined with regional geological investigation and protolith restoration of the wallrocks, a continental rift environment is suggested for the Changyi BIF deposition. The appearance of negative CePAAS anomalies might suggest the influence of the Great Oxidation Event at the time of deposition. The Changyi BIF witnessed the major Paleoproterozoic rifting–collision events in the NCC and their unique distribution in the NCC contrasts with other examples elsewhere in the world.  相似文献   

8.
Southern Peru contains important epithermal Au–Ag (± base metals) deposits, such as Canahuire, Tucari, Santa Rosa, Caylloma, Shila and Paula. The Chapi Chiara gold prospect is located in this region and is part of a paleo-stratovolcano of the Upper Miocene–Pliocene. The hydrothermal alteration of the prospect was characterized based on spectroradiometric data, geochemistry and petrography. The mineralogical data, interpreted based on reflectance spectroscopy, were spatialized using the sequential indicator simulation technique for producing probabilistic maps of alteration. The inner part of the paleo-stratovolcano (SW sector) is marked by three main cores of advanced argillic alteration (AAA) (quartz–alunite supergroup minerals–kaolinite–dickite ± topaz ± pyrophyllite ± diaspore) associated with topographic highs. The AAA1 core is surrounded by argillic alteration (quartz–illite–paragonitic illite–smectite ± pyrite) and propylitic alteration (quartz–plagioclase–chlorite–calcite–epidote–smectite ± kaolinite ± pyrite ± chalcopyrite ± magnetite). The central sector of the prospect, situated in the NE flank of the paleo-stratovolcano, is characterized by hydrothermal breccias structured towards N65E. The main mineral phases comprise quartz and abundant pyrite, sometimes with traces of As. Anomalous geochemical values of Ag, As, Bi, Hg, Se, Sb and Te coincide with high gold contents in this sector of the prospect. Jarosite and goethite are evidence of a subsequent supergene event. Based on the mineralogical characterization, we conclude the existence of a high sulfidation epithermal system in Chapi Chiara. Hypogene minerals of higher temperature in the SW sector of the prospect, such as diaspore, pyrophyllite and topaz in the AAA zone, and epidote in the propylitic alteration zone, can reveal that the system is currently in a relatively deep erosion level, suggesting its proximity in relation to the interface between a deep epithermal system and a mesothermal system.  相似文献   

9.
Cu-rich massive sulfide deposits associated with mafic–ultramafic rocks in the southern portion of the Main Urals Fault (MUF) are characterized by variable enrichments in Ni (up to 0.45 wt.%), Co (up to 10 wt.%) and Au (up to 16 ppm in individual hand-specimens). The Cu (Ni–Co)-rich composition of MUF deposits, as opposed to the Cu (Zn)-rich composition of more eastward massive sulfide deposits of broadly similar age along the western flank of the Magnitogorsk arc, reflects the abundance of seafloor-exposed, Ni–Co-rich ultramafic rocks in the most external portion of the Early-Devonian Magnitogorsk forearc. Morphological, textural, and compositional differences between individual deposits are interpreted to be the result of the sulfide deposition style and, in part, of the original subseafloor lithology. One deposit produced by dominantly on-seafloor hydrothermal processes is characterized by pyrite–marcasite  pyrrhotite, not so low Zn grades (occasionally up to 2 wt.%), abundant clastic facies and periodical superficial oxidation. Deposits produced by dominantly subseafloor hydrothermal processes are characterized by pyrrhotite > pyrite, very low Zn (generally < to ≪ 0.1 wt.%), volumetrically minor clastic facies, and multi-layer deposit morphology. Very low Ni/Co ratios in the on-seafloor deposit may indicate a dominant metal contribution from a mafic rather than ultramafic source. The sulfide mineralization was associated with extensive hydrothermal alteration of the host ultramafic and mafic rocks, leading to formation of abundant talc, talc–carbonate and chlorite rocks. Occurrence of large volumes of such altered lithotypes in ophiolitic belts may be considered as a potential searching criteria for MUF-type (Cu, Co, Ni)-deposits. In spite of the contrasting geodynamic environment, geological, geochemical, textural and mineralogical peculiarities of the MUF deposits in many respects are similar to those of ultramafic-hosted massive sulfide deposits along the Mid-Atlantic Ridge. In geological time, supra subduction-zone settings appear to have been more effective than mid-ocean ridge settings for preservation of ultramafic-hosted massive sulfide deposits.  相似文献   

10.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

11.
The La Josefina Jurassic epithermal Au–Ag deposit located in Patagonia, Argentina, developed in an extensional setting of a back-arc environment, associated with a widespread Middle–Late Jurassic calc-alkaline volcanism. Block faulting has juxtaposed shallow level features evidenced by hot spring manifestations, hydrothermal eruption breccias and Au-rich veins, which suggest that mineralization in these veins, could extend far below the depths already tested by core drilling. Veins are filled by quartz, chalcedony, opal and minor adularia and barite with massive, comb, cockade, colloform–crustiform bandings and lattice-bladed textures. Ore minerals include electrum, Ag-rich sulfosalts (freibergite), pyrite, galena, sphalerite, chalcopyrite and specular hematite with minor arsenopyrite, marcasite, tetrahedrite and bornite. Four mineralizing stages have been identified, the first two (S1 and S2) are Au and Ag-rich, with temperatures ranging from 225 to 290° and salinities from up to 15 wt.% in S1 decreasing to ~ 1 wt.% NaCl in S2. The third stage (S3) displays higher base metal contents at lower temperatures (~ 200 °C). Finally, the last stage (S4) is barren with temperatures lower than 100 °C. Veins are surrounded by a proximal alteration halo of quartz + pyrite ± adularia ± illite followed outwards by illite/smectite interstratified clays and smectites (with less chlorite) to a propylitic zone. Stable isotope values calculated for the fluids show a mostly meteoric origin for mineralization fluids. Such distinct features place the La Josefina deposits in a hot spring environment with evidences of being formed at a proximal position of the Jurassic paleosurface and paleowater level.  相似文献   

12.
We have used geodetic techniques to improve constraints on the crustal motion of the Pamir Plateau. Three campaigns of Global Position System data acquisition between 2011 and 2015 demonstrate that, in association with the India–Asia collision, a complex pattern of crustal motion exists in the Pamir Plateau. In a north–south direction from the Indian Plate to the Hazak Block, the crust has absorbed ~ 35 mm/yr of shortening, of which ~ 35% is distributed around the Hindu Kush region (~ 12 mm/yr), and another ~ 35% is taken up around the Alai Valley (also ~ 12 mm/yr). Global Position System measurements also show ~ 5 mm/yr of shortening between the Pamir Plateau and the Tajik Basin, whereas between the Pamir and the Tarim Basin, an ~ 10 mm/yr extension rate is observed. With respect to the stable Eurasian Plate, the Pamir rotates counterclockwise at a rate of ~ 1.822°Myr 1, with an Euler pole positioned about the west end of the Tajik Basin (37.03 ± 0.74°N, 65.89 ± 0.12°E). The strain rate field calculated from Global Position System velocities reveals that the crustal motion is consistent with localized deformation around the Hindu Kush and the Alai Valley, the latter representing a zone with strong shallow seismic activity.  相似文献   

13.
We employed X-ray diffraction methods to quantify clay mineral assemblages in the Indus Delta and flood plains since ~ 14 ka, spanning a period of strong climatic change. Assemblages are dominated by smectite and illite, with minor chlorite and kaolinite. Delta sediments integrate clays from across the basin and show increasing smectite input between 13 and 7.5 ka, indicating stronger chemical weathering as the summer monsoon intensified. Changes in clay mineralogy postdate changes in climate by 5–3 ka, reflecting the time needed for new clay minerals to form and be transported to the delta. Samples from the flood plains in Punjab show evidence for increased chemical weathering towards the top of the sections (6–< 4 ka), counter to the trend in the delta, at a time of monsoon weakening. Clay mineral assemblages within sandy flood-plain sediment have higher smectite/(illite + chlorite) values than interbedded mudstones, suggestive of either stronger weathering or more sediment reworking since the Mid Holocene. We show that marine records are not always good proxies for weathering across the entire flood plain. Nonetheless, the delta record likely represents the most reliable record of basin-wide weathering response to climate change.  相似文献   

14.
《Gondwana Research》2014,25(1):204-213
Bounded by the western and eastern syntaxes, the Himalayan region has experienced at least five M ~ 8 earthquakes during a seismically very active phase from 1897 through 1952. However, there has been a paucity of M ~ 8 earthquakes since 1952. Examining of various catalogues and seismograms from the Gottingen Observatory, it is established that this quiescence of M ~ 8 earthquakes is real. While it has not been possible to forecast earthquakes, there has been a success in making a medium term forecast of an M 7.3 earthquake in the adjoining Indo-Burmese arc. Similarly we find that in the central Himalayan region, earthquakes of M > 6.5 have been preceded by seismic swarms and quiescences. In the recent past, based on GPS data, estimates have been made of the accumulated strains and it is postulated that a number of M ~ 8 earthquakes are imminent in the Himalayan region. We examine these estimates and find that while earthquakes of M ~ 8 may occur in the region, however, the available GPS data and their interpretation do not necessarily suggest their size and time of occurrence and whether an earthquake in a particular segment will occur sooner in comparison to that in the neighboring segment. We also comment on the inference of occurrence of M ~ 8 earthquakes based on M8 algorithm for the region. We conclude that while an M ~ 8 earthquake could occur any time anywhere in the Himalayan region, there is no indication as of now as to where and when it would occur. We impress on the need for preparedness to mitigate the pending earthquake disaster in the region.  相似文献   

15.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

16.
《Gondwana Research》2013,23(3-4):828-842
Whether any Grenvillian magmatic records are preserved in the North China Craton (NCC) is a key issue to understand the Proterozoic tectonic evolution of the NCC and its correlation to the supercontinent Rodinia. Meso- to Neo-proterozoic sedimentary series is well exposed in the NCC, but magmatic events in this period, especially of 1.3–1.0 Ga, have seldom been reported. New U–Pb isotopic dating and Hf isotopic composition analyses have been carried out in this study using SIMS and LA–ICP-MS methods on detrital zircons from sandstones of the Tumen Group in the Shandong Peninsula and quartz sandstones of the Sangwon System in the Phyongnam Basin, North Korea. The age populations of the detrital zircons of the Tumen Group are at ~ 2.5 Ga, ~ 1.85 Ga, ~ 1.7 Ga, ~ 1.58 Ga, ~ 1.5 Ga, ~ 1.36 Ga and ~ 1.2 Ga and those of the Sangwon System are at 1.88–1.86 Ga, ~ 1.78 Ga, 1.62–1.58 Ga, 1.46–1.41 Ga, ~ 1.32 Ga, ~ 1.17 Ga and ~ 980 Ma. Most of the age peaks of Neoarchean and Proterozoic correspond to the significant tectonic-magmatic-thermal events previously recognized in the NCC, revealing that the main provenances of the Tumen Group and the Sangwon System are Early Precambrian basement and Late Paleo- to Meso-proterozoic magmatic rocks of the NCC. Furthermore, the youngest detrital zircon ages of ~ 1.1 Ga from the Tumen Group and 984 Ma from the Sangwon System, as well as 910 Ma Rb–Sr whole rock isochron age of a limestone from the Tumen Group and 899 Ma mafic sills intruding the Sangwon System suggest that both groups were deposited in the Neoproterozoic, coevally with the Qingbaikou System in the Yanliao Aulacogen. The common zircon ages of 1.3–1.0 Ga from the Tumen Group and the Sangwon System, as well as the contemporaneous Penglai and Yushulazi Group in the eastern margin of the NCC, indicate that during the deposition of these sediments there have been significant contributions from Grenvillian magmatic rocks in the eastern NCC. This may provide clues to understand the possible relationship of the NCC and the supercontinent Rodinia. Moreover, the positive εHf (t) and ~ 2.8 Ga crust model ages of detrital magmatic zircons of 2.8–2.4 Ga suggest that there have been significant crustal growth at ~ 2.8 Ga in the eastern margin of the NCC, same as in other areas of the NCC.  相似文献   

17.
The Qaidam Basin is the largest intermontane basin of the northeastern Tibetan Plateau and contains a continuous Cenozoic sequence of lacustrine sediments. A ~ 1000-m-deep drilling (SG-1) with an average core recovery of ~ 95% was carried out in the depocenter of the Chahansilatu playa (sub-depression) in the western Qaidam Basin, aimed to obtain a high-resolution record of the paleoenvironmental evolution and the erosion history. Stepwise alternating field and thermal demagnetization, together with rock magnetic results, revealed a stable remanent magnetization for most samples, carried by magnetite. The polarity sequence consisted of 16 normal and 15 reverse zones which can be correlated with chrons 1n to 2An of the global geomagnetic polarity time scale. Magnetostratigraphic results date the entire core SG-1 at ~ 2.77 Ma to ~ 0.1 Ma and yielded sediment accumulation rate (SAR) ranging from 26.1 cm/ka to 51.5 cm/ka. Maximum SARs occurred within the intervals of ~ 2.6–2.2 Ma and after ~ 0.8 Ma, indicating two episodes of erosion, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling.  相似文献   

18.
Epithermal gold (Au) deposits result from the combination of a sustained flux of metal-rich fluids and an efficient precipitation mechanism. Earthquakes may trigger gold precipitation by rapid loss of fluid pressure but their efficiency and time-integrated contribution to gold endowment are poorly constrained. In order to quantify the feedbacks between earthquake-driven fracturing and gold precipitation in the shallow crust, we studied the gold-rich fluids in the active Tolhuaca geothermal system, located in the highly seismic Southern Andes of Chile. We combined temperature measurements in the deep wells with fluid inclusion data, geochemical analyses of borehole fluids and numerical simulations of coupled heat and fluid flow to reconstruct the physical and chemical evolution of the hydrothermal reservoir. The effect of seismic perturbations on fluid parameters was constrained using a thermo-mechanical piston model that simulates the suction pump mechanism occurring in dilational jogs. Furthermore, we evaluated the impact of fluid parameters on gold precipitation by calculating the solubility of gold in pressure (P)–enthalpy (H) space. The reconstructed fluid conditions at Tolhuaca indicate that single-phase convective fluids feeding the hydrothermal reservoir reach the two-phase boundary with a high gold budget (~ 1–5 ppb) at saturated liquid pressures between 20 and 100 bar (210 °C < Tsat < 310 °C). We show that if hydrothermal fluids reach this optimal threshold for gold precipitation at a temperature near 250 °C, small adiabatic pressure drops (~ 10 bar) triggered by transient fault-rupture can produce precipitation of 95% of the dissolved gold. Our results at the active Tolhuaca geothermal system indicate that subtle, externally-forced perturbations – equivalent to low magnitude earthquakes (Mw < 2) of a hydrothermal reservoir under optimal conditions – may significantly enhance gold precipitation rates in the shallow crust and lead to overall increases in metal endowment over time.  相似文献   

19.
Economic important minerals and ore deposits are common in hydrothermal altered serpentinized zone. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite sensor is capable of discrimination of such hydrothermal mineralized zone and detection of hydrothermal altered minerals. In the present study, the hydrothermal altered serpentinized harzburgites of Wadi Hibi area of Northern Oman Mountains have been discriminated by using ASTER VNIR–SWIR spectral bands by image processing methods and the occurrences of Ni-magnesioferrite–magnetite–awaruite in the rocks are studied. The color composite RGB image developed using ASTER spectral bands 8, 4 and 1, mapped well the occurrence of weathered peridotites by pale green to dark blue in colors and discriminated the hydrothermally altered serpentinized rocks by pale brown to dark blue colors due to the strong absorption of OH and Mg–OH molecules that occurred in the serpentine minerals of the rocks in the study area. The ASTER band ratios 4/7, 4/1, and 2/3 × 4/3 RGB images studied are capable of discrimination of hydrothermal mineralized areas more clear by pale blue to purple colors due to the strong absorption of such hydroxyl bearing serpentine minerals. The studied image processing methods are evaluated by applying to the region of Wadi Sarami situated in the Semail ophiolite (Oman). In addition to that, the occurrence of serpentine minerals namely, lizardite and antigorite in the hydrothermally altered serpentinized region are detected qualitatively and quantitatively using Spectral Angle Mapper (SAM) supervised classification image processing method and studied.The interpreted images are verified in the field and checked for the occurrences of minerals including Ni-magnesioferrite, magnetite, pentlandite and awaruite and are confirmed through laboratory studies. Petrographic study of serpentinized harzburgites shows that the rocks consist predominantly of antigorite and lizardite serpentines, olivine and have the opaque minerals assemblage of Ni-magnesioferrite + magnetite + awaruite + pentlandite developed during serpentinization of the rock. The occurrences of such minerals are confirmed by XRD, electron microprobe analyses and spectral measurements in the laboratory.ASTER sensor proved its capability in discriminating the hydrothermal altered serpentinized zone and detecting the mineral occurrences and thus the study recommends the technique to the exploration geologists, scientists and mining geologists for mapping of such rocks and minerals in the similar arid region.  相似文献   

20.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号