首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Campanian of the eastern Koppeh-Dagh Basin (NE Iran) is generally considered to be represented by the upper part of the Abderaz and the Abtalkh formations. The Abtalkh Formation, which is studied here, reaches thicknesses of up to 1750 m in the area. The formation is characterized by abundant, diverse, and poor to moderately well preserved calcareous nannofossil assemblages of Tethyan affinity. The assemblages were studied in detail in two sections in eastern Koppeh-Dagh, allowing construction of a precise biozonation for this stage. The Abtalkh Formation at sections in Abtalkh village and Padeha spans biozones CC20 to CC23a (UC15bTP to UC16). The results of this study indicate a late early to late Campanian age for the formation in the area. The most complete Campanian sequence is in the southeast, where the Padeha section is located. Nannofossil abundance and diversity decreases upwards, showing a trend from the base to top of the formation. Dominance of warm water taxa, and low abundance of high latitude taxa, confirm placement of the basin in low to mid palaeolatitudes during deposition of the formation.  相似文献   

2.
The diagenesis of carbonate platform sediments is controlled by the original facies and mineralogy, climate, sea-level changes and burial history; these controls are clearly seen in the diagenesis of the Urgonian platform carbonates of SE France. Early diagenesis in the Urgonian platform included the precipitation of marine cements, dissolution of rudist shells and minor karstification. Diagenetic features produced during this phase were controlled by several falls in relative sea-level during the Barremian to mid-Aptian punctuating platform sedimentation, the original mineralogy of the sediment and the prevailing semi-arid/arid climate in the region at this time. Following a relative sea-level rise and further sedimentation, progressive burial of the platform led to minor compaction, followed by precipitation of coarse, equant, zoned to non-luminescent, calcite cement. This cement was cut by later stylolites, suggesting a relatively shallow-burial origin. Stable isotope (mean values - 7.94%δ18O and 0.36%δ13C) and trace element (mean values of Fe 334 ppm, Mn 92 ppm and Sr 213 ppm) data suggest that these cements precipitated from meteoric fluids at temperatures slightly elevated relative to depositional temperatures. A variable thickness of replacive dolomite which occurs preferentially within the shelf-margin facies of the lower part of the Urgonian post-dates mechanical fracturing and chemical compaction, but pre-dates the main phase of stylolitization. It is probable that the dolomitizing fluid was sourced by the early compaction-driven release of connate fluids held within the underlying muddy units. The burial history of these rocks suggests that calcite cementation and dolomitization took place at relatively shallow burial depths (1–1.5 km). The overall diagenetic history of the Urgonian Limestone Formation is a reflection of the pre-conditioning of the platform limestones by climate, sea level, tectonics and the shallow burial depths experienced by the platform during the later Mesozoic.  相似文献   

3.
Conodonts and re-deposited shallow-water benthic foraminifera co-occur in the Upper Norian-Rhaetian Slatnik Formation of the Slovenian Basin (Southern Alps). The Mt. Kobla and Mt. Slatnik sections were investigated in order to give the first direct correlation between these two groups. The Norian-Rhaetian boundary (NRB) is placed at the First Appearance Datum of the conodont Misikella posthernsteini and is approached with the First Occurrence of the foraminifer Involutina turgida. An association of Trocholina turris with duostominids is a good marker for the Rhaetian. Careful revision of literature combined with our data culminated in reambulation of stratigraphical ranges for several foraminiferal species. The foraminiferal Triassic-Jurassic boundary (TJB) can be defined with the Last Occurrence of Galeanella tollmanni, ??Sigmoilina?? schaeferae or duostominids. The absence of the uppermost Rhaetian Misikella ultima conodont zone and the close coincidence of foraminiferal and conodont TJB could point to the presence of hiati in the upper part of the Slatnik Formation. Consequently, the exact pattern of disappearance of Late Triassic foraminifera at the boundary could not be observed. It is clear, however, that the foraminiferal assemblage was decimated for reef-dwelling foraminifera, duostominids and most of the platform-dwelling foraminifera. Biotic changes at the TJB are best explained as a result of a biocalcification crisis.  相似文献   

4.
The San Antonio–La Juliana tectono‐sedimentary unit contains the only Namurian marine carbonates in the southwestern part of the Iberian Peninsula. The analysis of this unit is fundamental in understanding the sedimentary evolution and tectonic movements which operated during the Namurian in this area. Using foraminifera the succession has been assigned to two biozones (Zones 17 and 18), both occurring in the Pendleian (early Namurian). Seven stratigraphic sections have been analysed: San Antonio, Burjadillo, Lavadero de la Mina, Cornuda, Lozana, Caridad and Via Crucis. The stratigraphic succession of the San Antonio–La Juliana Unit consists of olistolites in the basal part, with common debris‐flow deposits (mainly of carbonates, with minor siliciclastic rocks), and turbidites, all of them embedded in shales. These rocks, interpeted as slope deposits, pass up into shallow‐water platform facies, with sediments characteristic of the inner platform and tidal flats. Above these rocks, terrigenous deltaic deposits occur. Thus, the stratigraphic sections show an overall shallowing‐upward trend. The isolation of some outcrops, and the duplication and absence of some parts of the stratigraphic succession are explained by tectonic movements. Overall, tectonic factors seem to be the main control rather than glacio‐eustatic or autocyclic processes, and sedimentation took place in a strike‐slip regime. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Middle Tithonian-Berriasian shallow platform carbonates of the Maestrat Basin (Salzedella and Montanejos sections, NE Spain) are stacked in sequence stratigraphic units of different orders. Higher-order sequences (parasequences and subunits) have a shallowing or deepening-shallowing evolution. They have been related to the short-term eccentricity and precession cycles. Major facies changes and stacking pattern of parasequences reveal the presence of two 2nd-order sequences. The Lower Sequence is middle Tithonian-mid early Berriasian in age. The Upper Sequence extends up to the mid-late Berriasian. It is suggested that local subsidence changes along with regional sea-level changes controlled the long-term evolution of accommodation in the Maestrat Basin. Facies evolution, stacking pattern and sharp lithological changes have allowed the definition of five 3rd-order sequences in the Lower Sequence in Montanejos. The transgressive deposits are characterised by the progressive absence of the restricted lagoon facies, and the presence of deepening-upward intervals in the parasequences. The highstand deposits display an increase in siliciclastics and a progressive predominance of restricted lagoon facies. Some of the 3rd-order sequence boundaries match the sequence boundaries identified in other European basins and may be related to sea-level falls (induced by the long-term eccentricity cycle) enhanced during periods of long-term loss of accommodation.  相似文献   

6.
Pliocene and Pleistocene deposits from Grande‐Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation controlled by both rapid sea‐level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 (‘Calcaires inférieurs à rhodolithes’) deposited during the Late Zanclean to Early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal‐rich deposits, which dominate the western part of Grande‐Terre, change to planktonic foraminifer‐rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 (‘Formation volcano‐sédimentaire’, ‘Calcaires supérieurs à rhodolithes’ and ‘Calcaires à Agaricia’) was deposited during the Late Piacenzian to Early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal‐dominated ramp that changes upward into a homoclinal, coral‐dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea‐level fall. Finally, Sequence S4 (‘Calcaires à Acropora’) probably formed during the Calabrian, developing as a coral‐dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in Late Calabrian times.  相似文献   

7.
A combined biostratigraphic model comprising 12 biozones is proposed for the Berriasian–Bedoulian (lower Aptian) shallow-platform deposits of the newly defined Fahliyan, Sar Bisheh, Ghari, Gadvan and Chahoo formations in the Zagros fold-thrust belt. Six biozones are established for the benthic foraminifers, four plus one subzone (taxon-range zone) for the dasycladalean algae and three for the tintinnids. The top and base of these biozones are calibrated with Sr-isotope numerical dating. The dataset is founded on outcrops and subsurface data in the Khuzestan, Fars and Bandar Abbas areas. High resolution biostratigraphic studies reveal that a sedimentary break corresponding to an exposure is present at the base of the Berriasian across the platform, and becomes younger from west toward the east. Another diachronous regional hiatus is detected on top of the Sar Bisheh Formation. Dated late Valanginian pro parte, it is the largest hiatus occurring in the Fars area. This study demonstrates that the boundary between the Sar Bisheh Formation and the Ghari/Chahoo formations, respectively covering the former Lower Fahliyan and Upper Fahliyan/Gadvan-Dariyan formations, is Hauterivian, not Barremian as stated by previous authors. It also shows that the Gadvan Formation does not reach the Aptian, contrary to previous statements. Sr-isotope stratigraphy offers a comparable resolution to that achieved by biostratigraphy. Combining the two methods results in a better resolution, enabling to estimate the depositional rates and importance of missing intervals.  相似文献   

8.
The assemblages of fossil charophyte fructifications from the La Huérguina Formation at the La Huérguina stratotype and the Las Hoyas section, along with some other samples from isolated outcrops are composed of Atopochara trivolvis var. triquetra, Globator maillardii var. trochiliscoides, Globator maillardii var. biutricularis var. nov., Clavator harrisii var. reyi, Ascidiella cruciata and Mesochara harrisii. Some reworked utricles of Ascidiella iberica var. iberica were also found. The in situ assemblage belongs to the Cruciata-Paucibracteatus Biozone, which is Late Barremian–Early Aptian in age. These results confirm that the entire deposition of the La Huérguina Formation took place within this biozone and not earlier, as previously thought. The top of the unit can be limited to the uppermost Barremian with biostratigraphic data from ostracods. Globator maillardii var. biutricularis var. nov. is defined as the end form for the Globator lineage according to present knowledge. It is characterised by its unique utricle morphology, showing a basal ring representing a second, external utricular layer. This layer shows a primitive structure, reminiscent of G. maillardii var. mutabilis, in contrast to the internal utricle, which is more derived and similar to G. maillardii var. trochiliscoides. In comparison with other non-marine formations of the same age in the Iberian Chain and in Europe, the charophyte assemblages from the La Huérguina Formation appear to be relatively poor and monotonous, suggesting that some of the species found elsewhere never reached this part of the basin owing to the brief development of non-marine facies there. The main differences in composition between the samples studied are indicative of the palaeoecological conditions. Atopochara trivolvis triquetra was found to be dominant in shallow lacustrine facies and Globator maillardii var. trochiliscoides and var. biutricularis are associated with temporary lakes from a well-drained palustrine area. Clavator harrisii and Mesochara harrisii thrived on floodplains whereas Ascidiella cruciata grew in palustrine environments with significant edaphic activity.  相似文献   

9.
巴西大坎波斯盆地下白垩统湖相碳酸盐岩油气资源丰富,但是硅化碳酸盐岩的出现不仅使原始碳酸盐岩沉积微相类型和沉积模式有待系统研究,还给深水油气勘探开发带来了挑战。基于古地貌、壁芯薄片、测井响应等数据,分析了坎波斯盆地东部下白垩统硅化碳酸盐岩原始沉积的古水介质、湖平面变化及沉积微相,厘清了湖相碳酸盐岩发育的主控因素,建立起相应的沉积模式。借助Fischer曲线可将硅化碳酸盐岩发育段划分为一个可容空间由大减小再增大的三级旋回,湖平面表现为先下降后上升;湖盆中央古隆起周缘类似远端变陡缓坡,发育了灰泥坪、藻礁、颗粒滩、滩前前积体和滑塌体等5种沉积微相;古地貌决定了藻礁和颗粒滩发育在构造高部位的相对深水区,同时受湖平面变化而发生垂向互层叠置;该段碳酸盐岩沉积时期,湖平面至少出现过两次下降、三次上升,可以划分为高位湖退、低位湖退、低位湖侵、高位湖侵四个演化阶段。研究成果为湖相碳酸盐岩硅化成因分析、硅化作用过程研究及硅化碳酸盐岩中有利储层的寻找奠定了基础。  相似文献   

10.
The subject of the study was the taxonomy of the ammonite fauna from the Upper Barremian marls and marly limestones of the Donji Milanovac Formation outcropped at the Boljetin Hill (Danubicum Unit). These sediments yielded a rich ammonite fauna which included also representatives of two superfamilies, Desmoceratoidea and Silesitoidea. The Desmoceratoidea include the family Barremitidae to which belong Plesiospitidiscus boljetinensis n. sp., Barremites balkanicus, Montanesiceras breskovskii n. sp., Barremitites strettostoma strettostoma and B. panae, Torcapella serbiensis n. sp., Pseudohaploceras tachthaliae, P. portaeferreae, Melchiorites haugi and Patruliusiceras cf. crenelatum. The Silesitoidea are represented by the family Silesitidae with Silesites trajani and S. seranonis. With the exception of the new, possibly endemic species, Plesiospitidiscus boljetinensis n. sp., Montanesiceras breskovskii n. sp., and Torcapella serbiensis n. sp., these taxa are common in the Tethyan regions. The studied deposits with ammonites belong to the lower part of the Late Barremian, in particular to the upper part of the Toxancyloceras vandenheckii ammonite Zone up to the lower part of the Imerites giraudi Zone.  相似文献   

11.
准确建立四川盆地龙王庙组沉积模式和精细刻画颗粒滩时空分布规律,是提高天然气勘探成功率的关键。依据野外露头、钻井、测井和地震等资料,综合分析四川盆地及周缘下寒武统龙王庙组沉积相类型及特征;以四级层序为单元,精细刻画等时地层格架内沉积相时空展布特征,建立沉积模式,揭示颗粒滩发育规律,指出下一步天然气勘探方向。结果表明: (1)四川盆地及周缘龙王庙组发育典型浅水碳酸盐岩镶边台地沉积体系,自盆地西缘向东依次发育混积潮坪、局限台地(颗粒滩、云坪和咸化潟湖等微相类型)、开阔台地(颗粒滩、灰坪等微相类型)、台地边缘和斜坡—盆地等沉积相类型;(2)建立了“一凹两隆,双滩成带”的沉积模式,颗粒滩的发育主要受控于古地貌和相对海平面升降,具体表现为垂向上主要发育于四级层序海退时期,平面上沿台地边缘带和围绕咸化潟湖的相对隆起区呈带状分布。由于颗粒滩是优质储集层发育的有利相带,因此该结果可为四川盆地寒武系龙王庙组下一步天然气勘探提供沉积地质基础。  相似文献   

12.
Upper Hauterivian deposits in the Kurilovo area, Kamenica 1 section, NE of Niš, are described based of abundant and diverse orbitolinids. So far, the interval was assigned to the Barremian–Aptian on the geological map. Such a new age assignment results from the first detailed study carried out on the orbitolinid fauna contained in the Lower Cretaceous (upper Hauterivian) shallow-water limestones of eastern Serbia. The upper Hauterivian is documented on the basis of two key stratigraphic markers, specifically Valserina primitiva and Paleodictyoconus beckerae.In addition to these late Hauterivian index fossils, the studied section bears orbitolinids having a larger stratigraphic distribution: Cribellopsis neoelongata, Cribellopsis thieuloyi?, Montseciella glanensis, Orbitolinopsis debelmasi, Orbitolinopsis cf. debelmasi, Orbitolinopsis sp., Paleodictyoconus cuvillieri, Paleodictyoconus cf. cuvillieri, Paleodictyoconus cf. beckerae, Paleodictyoconus cf. actinostoma, Paleodictyoconus sp., Paracoskinolina? jourdanensis, Paracoskinolina cf. hispanica, Urgonina alpillensis, Valserina sp. The microfossil assemblage includes other foraminifers such as Charentia cuvillieri, Mayncina bulgarica, Nautiloculina cretacea, Pfenderina globosa, Pseudocyclammina cf. lituus, Pseudolituonella gavonensis, Ammobaculites sp., Bolivinopsis sp., abundant trocholinids, various miliolids, other foraminifers and sparse algae which will be presented separately.  相似文献   

13.
Late Albian ammonite faunas from the Aitamir Formation of the Koppeh Dagh Basin in northeast Iran are described and illustrated. These comprise 14 taxa, several of which are recorded from Iran for the first time, namely Anahoplites planus (formerly recorded from central Iran in open nomenclature only), Semenoviceras solidus, Epihoplites (Metaclavites) iphitus, Hysteroceras orbignyi and Pseudhelicoceras robertianum. New records of Placenticeras grossouvrei extend the stratigraphic range of this species downwards into the Late Albian; previously it was known from the Early and Middle Cenomanian only. The record of the rare E. (M.) iphitus fills a palaeobiogeographic gap between Crimea and Tajikistan, and the holotype of Spath is re-illustrated here. Additionally, Epihoplites trapezoidalis, from the Late Albian of Tajikistan, is relegated into the synonymy of Spath's species. A large number of taxa typical of the Late Albian (upper part of the Gault Clay Formation) of northwest Europe indicate close palaeobiogeographic affinities with the Koppeh Dagh Basin and faunal exchange across the Russian Platform and Transcaspia. The stratigraphic succession of the ammonite faunas is used for a biostratigraphic subdivision of the upper Aitamir Formation.  相似文献   

14.
《International Geology Review》2012,54(15):1909-1921
This paper reports the carbon and oxygen isotope compositions of lacustrine carbonate sediments from the Palaeogene Shahejie Formation, Qikou depression, Bohaiwan Basin, with the aim of determining the palaeoenvironmental conditions in the region. Results from Es2, the second member of the Shahejie Formation, showed values of δ13C and δ18O from –1.2‰ to +2.4‰ (average +0.6‰) and from –6.8‰ to –4.7‰ (average –5.7‰), respectively, suggesting a relatively hot climate attending deposition. The slightly closed nature of the lake, which contains brackish water, resulted in higher carbonate δ13C and δ18O values than in a meteoric environment. The values of δ13C and δ18O preserved within the carbonates of the overlying lower Shahejie I (Es1) varied between +1.3‰ and +4.9‰ (average +3.2‰) and from ?4.4‰ to ?1.8‰ (average ?3.1‰), respectively, indicating that the climate became colder at that time. Subsequently, a marine transgression caused the salinity of the lake water to increase. The values of δ13C and δ18O were controlled by salinity. The high δ13C values were also influenced by the rapid burial of the lake organisms and by algal photosynthesis. Values of δ13C and δ18O from carbonates in upper Es1 ranged from ?8.0‰ to +11.0‰ (average +10.1‰) and from ?5.0‰ to ?1.5‰ (average ?3.4‰), respectively, indicating a slight increase in the temperature over time. In the closed and reducing environment, extremes in δ13C values resulted from biochemical fermentation. The positive δ13C excursion recorded in the carbonates of the Shahejie Formation in the Qikou depression indicates that the palaeoclimate underwent a significant transformation during the Eocene and the Oligocene.  相似文献   

15.
The Sarvak Formation is a carbonate sequence of Late Albian–Early Turonian age in Zagros Basin in Iran. In this investigation, the Sarvak Formation at the Pyun Anticline section (Izeh Zone) has been studied. It consists of 797 m thick limestone which overlies the Kazhdumi Formation conformably and underlies the Gurpi Formation unconformably at the Pyun Anticline. A very rich fossil association (85 genera and 132 species) characterizes the Pyun section. Based on the stratigraphic distribution of diagnosed foraminifera, five biozones are established: 1, Muricohedbergella-Globigerinelloides sp. assemblage zone (Late Albian); 2, Praealveolina iberica-Chrysalidina gradata interval zone (Early Cenomanian); 3, Chrysalidina gradata-Cisalveolina fraasi (fallax) and C. lehneri interval zone (Middle Cenomanian); 4, C. fraasi (fallax) and C. lehneri-Praetaberina bingistani assemblage zone (Late Cenomanian); 5, Nezzazatinella picardi-Mangashtia- Dicyclina assemblage zone (Early Turonian). Based on the petrographic and sedimentological analyses, some 13 carbonate microfacies were identified. The investigated microfacies confirm a ramp-type paleoenvironment. These microfacies, from distal to proximal environments, consist of: MF1: planktonic foraminifera wackestone-packstone; MF2: Oligostegina planktonic foraminifera wackestone to packstone; MF3: planktonic-benthic foraminifers sponge spicules wackestone-packstone; MF4: rudist floatstone; MF5: rudist rudstone; MF6: bioclast intraclast grainstone; MF7: peloid intraclast grainstone; MF8: benthic foraminifers rudist grainstone-packstone; MF9: peloid bioclast grainstone-packstone; MF10: bioclast (benthic foraminifers) wackestone-packstone; MF11: peloid bioclast packstone; MF12: dacycladacea benthic foraminifera packstone-wackestone; MF13: miliolids wackestone-packstone.  相似文献   

16.
The Cenomanian–Turonian macrofauna from the Sinai Peninsula, Egypt offers an excellent opportunity to test the applicability of gradient analysis in palaeoecology and biostratigraphy. Detrended Correspondence Analysis (DCA) is a simple multivariate technique for arranging species and samples along environmental gradients. In order to reconstruct palaeoecological patterns and biostratigraphy, 42 samples, 4564 individuals, and 132 species from three sections of eastern Sinai were subjected to DCA. Compared with other multivariate techniques such as cluster analysis, the macrobenthic associations (obtained by DCA) fall fully within or deviate only slightly from associations obtained by cluster analysis. However, DCA makes it possible to arrange these associations from completely random distribution (as tested by cluster analysis) to a temporal gradient. Therefore, it is possible to use this multivariate technique also as a useful tool in biostratigraphy. The first detrended correspondence axis (DC1) reflects a water-depth gradient from onshore to offshore, higher scores being typical of onshore samples from the southernmost section and lower scores being typical of offshore samples from the northern section. Overprinted on the DC1 axis is also a gradient of life and feeding modes, as samples with low scores are dominated by epifaunal species and samples with high scores display a higher proportion of shallow-infaunal taxa. With respect to the second detrended correspondence axis (DC2), substrate composition and water energy are overprinted on this axis as samples with low scores predominantly are coarse-grained carbonates (e.g., reefal rudstone), while samples with high scores primarily are mixed-siliciclastics/carbonates (e.g., marl), which are dominated by low-energy taxa. Because the substrate conditions are closely related to the water energy, the coarse-grained substrates were deposited under high water energy, while the marly facies was deposited under low-energy conditions. Excursions in DC2 scores, reflecting substrate composition and water energy, are used to reconstruct the macrobenthic associations; eight associations and two assemblages were recognized. High stress environments (low DC2 scores) were occupied by less diverse associations such as the Chondrodonta joannae association and the Pchelinsevia coquandianaPraeradiolites biskraensis association. The latter association is stratigraphically followed by high-diversity associations such as the Ilymatogyra africanaRhynchostreon suborbiculatum association, which preferred less-stressed environments (high DC2 scores).  相似文献   

17.
Seismic‐scale continuous exposures of an Upper Carboniferous (Bashkirian–Moscovian) carbonate platform (N Spain) provide detailed information about the lithofacies and stratal geometries (quantified with differential global positioning system measurements) of microbial boundstone‐dominated, steep prograding and aggrading platform margins. Progradational and aggradational platform‐to‐slope transects are characterized by distinct lithological features and stratal patterns that can be applied to the understanding of geometrically comparable, high‐relief depositional systems. The Bashkirian is characterized by rapid progradation at rates of 415–970 m My?1. Characteristic outer‐platform facies are high‐energy grainstones with coated intraclasts, ooids and pisoids, moderate‐energy algal‐skeletal grainstones to packstones and lower energy algal packstone and boundstone units. The Moscovian aggradational phase is characterized by aggradation rates of 108 m My?1. Coated‐grain shoals are less common, whereas crinoidal bars nucleated in well‐circulated settings below wave‐base. Boundstones form a belt (30–300 m wide) at the platform break and interfinger inwards with massive algal‐skeletal wackestones (mud‐rich banks). The progradational phase has divergent outer‐platform strata with basinward dips of 12° to 2°. Steep clinoforms with dips of 20–28° are 650–750 m in relief and possibly sigmoidal to concave in the lower part. The basinward‐dipping outer‐platform strata might be depositional for less than 6°, consistent with lithofacies deepening seaward. The basinward dip is attributed to the downward shift of upper‐slope boundstone, forced by late highstand and relative sea‐level fall, and to compaction‐induced differential subsidence during progradation. The aggradational phase is characterized by horizontally layered platform strata. Clinoforms steepen to 30–45° reaching heights of 850 m and are planar to concave. The evolution from progradation to aggradation, at the Bashkirian–Moscovian boundary, is attributed to increased foreland‐basin subsidence and decreased boundstone accumulation rates. Progradation was primarily controlled by boundstone growth rather than by highstand shedding from the platform top. Within the major phases, aggradational–progradational increments are produced by third‐ to fourth‐order relative sea‐level fluctuations.  相似文献   

18.
The latest Carboniferous–Early Permian Dorud Group in the Chaman‐Saver area of eastern Alborz, Iran is more than 222 m thick and includes thick sequences of oncolitic limestone, sandy limestone, sandstones and shales. The Emarat and Ghosnavi formations of this Group are dated here as latest Gzhelian to early Sakmarian Stages. During the Asselian Stage, the sea level fell abruptly and epeirogenic episodes occurred. These events generated a broad, shallow carbonate platform suitable for the growth and diversity of smaller foraminifers in the Chaman‐Saver area which, consequently, displays faunal differences with the rest of the Alborz Mountains. Three foraminiferal biozones are proposed: Nodosinelloides potievskayae–Vervilleina bradyi Zone (latest Gzhelian), Calcitornella heathi–Nodosinelloides sp. Zone (latest Gzhelian–Asselian), and Rectogordius iranicus n. gen. n. sp.–Hemigordius schlumbergeri Zone (early Sakmarian). The new taxa described herein include: Pseudovidalina iranica n. sp., P. damghanica n. sp., Rectogordius iranicus n. gen. n. sp. and Tezaquina sp. 1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Early and early middle Cenomanian turrilitid ammonoids from the upper part of the Albian–Cenomanian Aitamir Formation of the Koppeh Dagh (northeast Iran) are described, illustrated and placed in an integrated stratigraphic context. The Aitamir Formation represents a graded siliciclastic shelf system and the turrilitid faunas comprise eight different species. Representatives of Mariella and Hypoturrilites have been recorded from a lower Cenomanian horizon in the Ghorghoreh section, corresponding to the Mantelliceras mantelli ammonite biozone. Mariella bicarinata (Kner, 1852) and H. wiedmanni Collignon, 1964 are recorded for the first time from Iran and the larger palaeobiogeographical area, respectively. The horizons with Turrilites costatus and T. scheuchzerianus at Taherabad can be dated as early middle Cenomanian Acanthoceras rhotomagense Zone, T. costatus Subzone. Concentrations of ammonoids commonly occur above regressive sandstone units, at the transition into overlying deeper marine shale units and in their lower parts, respectively. Such intervals represent the early transgressive systems tract of depositional sequences and may thus be regarded as early transgressive, slightly condensed shell accumulations. The uppermost lower to lower middle Cenomanian succession at Taherabad is of striking bio-, event- and sequence stratigraphic similarity to contemporaneous sections in northwest Europe. It reflects deposition during falling and low sea-level associated with the latest early Cenomanian unconformity SB Ce 3 as well as the pulsating transgressive development during the early middle Cenomanian, including levels correlative to the arlesiensis, primus and Mid-Cenomanian events in northwest Europe.  相似文献   

20.
The Chopf Member is a glauconitic, phosphate-bearing succession that occurs in the distal part of the Helvetic Alps (eastern Switzerland). The recent discovery of age-diagnostic ammonites within this horizon allows for its attribution to the lower part of the Gerhardtia sartousiana zone (middle Late Barremian). This new age corresponds to a maximal age for the onset of the Schrattenkalk Fm. in this area, and is coeval with the onset of the Urgonian facies in other parts of the western Tethyan realm. This new age allows also for a more precise dating of Late Barremian δ13C curves. To cite this article: S. Bodin et al., C. R. Geoscience 338 (2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号