首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Within the context of the southwestern Barents Sea, the southern Stappen High and its transition to the Bjørnøya Basin are still underexplored. Improved quality seismic reflection data are utilised to describe new insights into the Paleozoic to early Cenozoic tectono-stratigraphic evolution of the area, as well as to discuss the structural inheritance and the rift development. Well-defined syn-rift wedges and better resolution images for both the deep Carboniferous and Permian successions are revealed. In particular, both the mid-Carboniferous and Late Permian-earliest Triassic extensional phases are characterized by widespread NE-SW oriented normal faults that are mostly westward dipping. Although Triassic is mostly considered as a tectonically stable period in the Barents Sea, in the southern Stappen High there is clear identification of a localised depocentre (named herein “Intra Stappen Basin”) where syn-tectonic geometries characterize the upper Paleozoic and Triassic deposits. Regional correlation to Middle and Upper Triassic outcrops in southwestern Svalbard reveals possible progradation from a west-northwest Northeast Greenland provenance as a western sediment source area during the Triassic, in addition to the well-known eastern sediment source area. Thin but distinct Jurassic sequences are expected to be present on Stappen High associated with prominent regional NW-SE extension throughout Late Jurassic that culminated during the earliest Cretaceous. Furthermore, structural and stratigraphic relations are observed within the study area that clearly indicate a distinct early Aptian rift phase with increasing evidence for its occurrence in the southwestern Barents Sea. Upper Cretaceous sequences bounded by major low-angle west-dipping detachment faults are observed in southwest Stappen High. During early Cenozoic, the study area was located at the proximity of the paleo-coastline and paleo-shelf edge for both Paleocene and Eocene gravity mass-waste deposits. These are most probably related to a progressively evolving steep bathymetric gradient between the developing margin, mainly towards the west and to the south, and the uplifted Stappen High.  相似文献   

2.
High-quality 3D seismic data are used to analyze the history of fault growth and hydrocarbon leakage in the Snøhvit Field, Southwestern Barents Sea. The aim of this work is to evaluate tectonic fracturing as a mechanism driving hydrocarbon leakage in the study area. An integrated approach was used which include seismic interpretation, fault modeling, displacement analysis and multiple seismic attribute analysis.The six major faults in the study area are dip-slip normal faults which are characterized by complex lateral and vertical segmentation. These faults are affected by three main episodes of fault reactivation in the Late Jurassic, Early Cretaceous and Paleocene. Fault reactivation in the study area was mainly through dip-linkage. The throw-distance plots of these representative faults also revealed along-strike linkage and multi-skewed C-type profiles. The faults evolved through polycyclic activity involving both blind propagation and syn-sedimentary activity with their maximum displacements recorded at the reservoir zone. The expansion and growth indices provided evidence for the interaction of the faults with sedimentation throughout their growth history.Soft reflections or hydrocarbon-related high-amplitude anomalies in the study area have negative amplitude, reverse polarity and are generally unconformable with structural reflectors. The interpreted fluid accumulations are spatially located at the upper tips of the major faults and gas chimneys. Four episodes of fluid migration are inferred and are linked to the three phases of fault reactivation and Neogene glaciations. Hydrocarbon leakage in the Snøhvit Gas Field is driven by tectonic fracturing, uplift, and erosion. The interpreted deep-seated faults are the main conduits for shallow hydrocarbon accumulations observed on seismic profiles.  相似文献   

3.
Based on the analysis of the high-resolution 3D seismic data from the SW Barents Sea we study the hydrocarbon plumbing system above the Snøhvit and Albatross gas field to investigate the geo-morphological manifestation and the dynamics of leakage from the reservoir. Fluid and gas escape to the seafloor is manifested in this area as mega-pockmarks 1–2 km-wide, large pockmarks (<100 m wide) and giant pockmarks 100–300 m-wide. The size of the mega pockmarks to the south of the study area may indicate more vigorous venting, whilst the northern fluid flow regime is probably characterised by a widespread fluid and gas release. Buried mega depressions and large-to-giant pockmarks are also identified on the base Quaternary and linked to deep and shallow faults as well as to seismic pipes. A high density of buried and seafloor giant pockmarks occur above a network of faults overlying an interpreted Bottom Simulating Reflector (BSR), whose depth coincides with the estimated base of the hydrate stability zone for a thermogenically derived gas hydrate with around 90 mol% methane. Deep regional faults provide a direct route for the ascending thermogenic fluids from the reservoir, which then leaked through the shallow faults linked to seismic pipes. It is proposed that the last episodic hydrocarbon leakage from the reservoir was responsible for providing a methane source for the formation of gas hydrates. We inferred that at least two temporally and dynamically different fluid and gas venting events took place in the study area: (1) prior to late Weichselian and recorded on the Upper Regional Unconformity (URU) and (2) following the Last Glacial Maximum between ∼17 and 16 cal ka BP and recorded on the present-day seafloor.  相似文献   

4.
Subsurface and seafloor fluid flow anomalies are gaining large interest after the finding of five new hydrocarbon discoveries and observation of large gas flares in the SW Barents Sea. In the present study, we have analysed structural and stratigraphic controls on fluid flow towards the seafloor using gravity cores selected based on subsurface gas anomalies observed on seismic data from the Veslemøy High, SW Barents Sea. The subsurface fluid flow at the Veslemøy High is observed to be controlled by 1) the morphology and orientation of regional faults, structural highs and sedimentary basins, 2) the presence of Paleocene silica ooze deposits that changes microstructure with temperature thereby controlling fluid flow and 3) the location of regional and local open faults formed by glacial loading and unloading. Analysis of extractable organic matter in subsurface Holocene sediments corroborates the active migration pathways inferred from seismic data. Micropalaeontological studies on benthic foraminifera reveal methane seep associated assemblages that confirm the interpretation of subsurface gas anomalies in seismic data. We ultimately link these new results to the geological evolution history of the region to give a comprehensive model for the fluid flow system within the study area.  相似文献   

5.
Sukhikh  E. A.  Akhmedzjanov  V. R.  Ermakov  A. V. 《Oceanology》2019,59(4):603-611
Oceanology - According to a study of the thermal variability of the water column in the Kvitøya trough (northern part of the Barents Sea), substantial water temperature fluctuations in the...  相似文献   

6.
Regional setting of Håkon Mosby Mud Volcano, SW Barents Sea margin   总被引:1,自引:1,他引:0  
The Håkon Mosby Mud Volcano (HMMV) is a seafloor mud volcano, having a 1-km-diameter circular shape and a relief of 8–10?m. HMMV is located within a slide scar on the Bjørnøya glacial submarine fan on the SW Barents Sea slope, and is underlain by a >6-km-thick Cenozoic sequence. Multichannel seismic data reveal a 1- to 2-km-wide disturbed zone, which extends to a depth of >3?km below the HMMV. We relate the zone to the presence of free gas. The seismic data are compatible with an intrasedimentary sourced mud volcano related to the glacial sedimentation history and mass movements.  相似文献   

7.
8.
Diatoms are major primary producers of microbial biomass in the Antarctica. They are found in the water and sea ice. The distribution, abundance of the ice diatoms and their relation to the environmental factors inside and outside the ice have been studied for its special role in the Antarctic Ocean ecology. In this paper we describe the abundance, distribution and composition of diatom assemblages in  相似文献   

9.
The outer rise on the distal periphery of a subduction system is caused by emplacement of an accreted load onto the flexed oceanic lithosphere. By examining the bathymetry and free-air gravity anomaly data collected by satellite observations and marine reflection seismic data collected during the TAIGER project, we demonstrate the characteristics of the flexural outer rise seaward of the Manila Trench. The region of the outer rise on the westernmost periphery of the Manila subduction system is characterized by the positive free-air gravity anomaly seaward parallel to the Manila Trench and the morphological rise at the south of the Manila subduction system. A flexure simulation is performed based on the flexural profiles along the southern Manila Trench-outer system and the resulting effective elastic thickness values may provide an alternative aspect for the spreading rates of the South China Sea basin. Since both the western periphery of the Taiwan collision belt and Manila subduction belt are dominated by the strain regime of extension of flexural origin, it appears that the strain regime of flexural extension associated with the flexural forebulge of the Western Taiwan Foreland Basin to the north, and the strain regime of flexural extension associated with the outer rise seaward of the Manila Trench to the south are meridionally interconnected. This revised understanding of the strain regime of flexural extension origin west of the Taiwan–Luzon convergent belt provides an alternative point of view on the strain regime offshore SW Taiwan.  相似文献   

10.
The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.  相似文献   

11.
TrendanalysisofrelativesealevelriseorfallofthetidegaugestationsinthePacific¥MaJirui;TianSuzhen;ZhengWenzhenandChaiXinminInsit...  相似文献   

12.
On the basis of perennial monthly mean temperature and salinity data, the classification of monthly water masses at the surface and the bottom in the Bohai Sea, the Huanghai Sea and the East China Sea, has been made by using the method of fuzzy cluster from the modified characteristic of water masses in the shallow water area. In this paper, the basic features, growth and decline patterns of water masses in relation to fishing grounds in the whole shelves of the Bohai Sea, the Huanghai Sea and the East China Sea are discussed with emphasis.  相似文献   

13.
The Sørkapp Basin (NW Barents Shelf) contains a comprehensive sedimentary succession that provides insight into regional tectonics and depositional development of the shelf from the Devonian to the Cretaceous. With its location east of the mid-Atlantic spreading ridge and south of Svalbard, the Basin serves as an important link between the offshore and onshore realms.This study subdivides this sparsely studied basin into six main seismic units (three Paleozoic and three Mesozoic). A metamorphic basement together with assumed Devonian sedimentary deposits form the foundation for a chiefly Carboniferous basin. The Basin forms a syncline with infill showing limited fault-influence. Overlying the early infill are Late Carboniferous deposits which show less lateral variation in thickness but also active growth on the few faults showing significant displacement. The overlying platform deposits of the latest Carboniferous and Permian show a change in depositional geometry, with onlapping deposits towards the east probably resulting from uplift of the Stappen High and regional flooding. Subsequent, particularly Late, Triassic sedimentation shows a more distinctly progradational pattern with a dominantly southeastern source for sediments. During this shallow shelf-filling stage, the Sørkapp Basin is sheltered by the Gardarbanken High, blocking the Early Triassic clinoform development. The High was transgressed in the Middle Triassic and the platform-edge progressively approached the present Svalbard coastline.The youngest Mesozoic unit forms a separate saucer-shaped depocenter west of the Sørkapp Basin, where deposits are truncated by the seafloor in a mid-basin position and across the Gardarbanken High. The depositional pattern for this succession correlates with the outcrop pattern of the Adventdalen Group implying a post Middle Jurassic to Cretaceous age. The Sørkapp Basin has been referred to as a Cretaceous feature based in this depocenter. However, the foundations are much older and the Cretaceous depression is located west of the deeper basin. Accordingly, we propose the informal term Sørkapp Depression for the Cretaceous basin.  相似文献   

14.
- On the basis of the fact that the sharp thermocHne in the Bohai Sea and the northern Huanghai Sea is often distributed in the deep valley areas, it has been long thought that the reason of the formation of the sharp thermocHne is that the cold water can be easily kept in valleys. But recent investigations carried out in the southern Huanghai Sea in summer show that all of the sharp thermocHne areas were distributed in the shallow sloping-bottom areas but not in the deep valley areas. Only in autumn would the sharp thermoclines translate to the deep valley areas. In summer, they are characterized by shallow upper mixing layer and thin thickness in the southern Huanghai Sea. In addition to entrainment coming from lower boundary of upper mixing layer the entrainment from upper border of bottom homogeneous layer induced by tidal mixing also plays an important role in the growth and decay of thermoclines in these seas.  相似文献   

15.
Several hundred hydrothermal vent complexes were formed in the Vøring Basin as a consequence of magmatic sill emplacement in the late Palaeocene. The 6607/12-1 exploration well was drilled through a 220-m-thick sequence of Eocene–Miocene diatomites with carbonate nodules above the apex of one of these vent complexes. Analysed calcites and dolomites from this interval have isotopic signatures typical for methane seep carbonates, with low 13C signatures of –28 to –54 PDB. The data suggest that the vent complex acted as a fluid migration pathway for about 50×106 years after its formation, leading to near-surface microbial activity and seep carbonate formation.  相似文献   

16.
On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949–2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005–2016 when compared to 1970–1999. The results suggest that a winter SIC decrease in the BS in 2005–2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.  相似文献   

17.
Izhitskiy  A. S.  Romanova  N. D.  Vorobieva  O. V.  Frey  D. I. 《Oceanology》2022,62(4):439-446
Oceanology - The variability of sea ice in the Weddell Sea, along with melting of glaciers of the Antarctic Peninsula and ice shelves, determines the volumes of melt water entering the water area,...  相似文献   

18.
Application of satellite passive microwave sensing for the retrieval of key climatic parameters in the Barents Sea is considered. Fields of surface wind, atmosphere water vapor content and cloud liquid water content were found from MTVZA-GY radiometer onboard the Meteor-M N1 satellite and AMSR2 onboard the GCOM-W1 satellite with the use of original algorithms. The fields are in a good agreement with the ancillary remote and in situ measurements, which follows from the analysis of the evolution of the extra tropical and polar cyclones and cold air outbreaks with storm winds leading to intense air-sea interaction, and the formation and drift of sea ice.  相似文献   

19.
 On the southwestern Barents Sea shelf, sediments containing gas hydrates that overlie free gas have been inferred from multichannel seismic data. The volume of suspected gas hydrate is tentatively estimated to about 1.9×108 m3. The gas hydrate zone probably formed from thermogenic gas leaking from a deeper source. The hydrate zone may have thickened during the Neogene by including gas originally trapped as free gas below the hydrate following a significant downward migration of the isotherms caused by erosion and/or subsidence. Within the present oceanographic conditions, gas hydrate is suspected to be stable or slowly decomposing. Received: 20 December 1996 / Revision received: 20 August 1997  相似文献   

20.
Based on the numerical experiment on simulation of the Japan/East Sea (JES) water circulation response to the atmospheric forcing for 1958–2006, the analysis is made of its long-term variability in the JES Central Basin (CB). It was found that during the climatic year, the circulation remains cyclonic, strengthening in spring and weakening in autumn. The analysis of mean relative vorticity (MRV) at intermediate depths in the JES CB showed one that the spectrum of its interannual variability is formed mainly by oscillations of periods ~2, ~4 and ~5 years, and in the decadal range with ~10 and ~14 years. Along the depth, the spectral composition of MRV variability does not change, but there is a noticeable weakening of decadal variability amplitude, which does not occur with the 4- and 5-year oscillations. Using SVD-analysis, the connection is established between MRV variability, wind stress curl (WSC), as well as sensible heat flux. The strong connection between MRV and WSC is revealed in the range of 4–5 years, and in the decadal range (period is 10 years) the significant connection is with both WSC and air-sea temperature as a result of winter cooling and following deep convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号