首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear modulus and damping ratio of grouted sand   总被引:2,自引:0,他引:2  
An experimental comparative study of three different grouted sands in terms of their effects on the values of two dynamic properties is presented. The dynamic properties studied are the shear modulus and the damping ratio which are determined with resonant column tests and cyclic triaxial tests. The behaviour of a pure Fontainebleau sand is compared with the behaviour of a Fontainebleau sand grouted with a silicate grout, a micro-fine cement grout and a mineral grout. The effects of the grouting treatment, the type of grout, the confining pressure, and the strains, on the shear modulus and the damping ratio are studied. The test results have shown that grouting improves the stiffness of the sand especially for small strains. Whatever the type of material, confining stress improves the shear modulus whereas it has a negligible effect on the damping ratio. When strain increases, the shear modulus decreases and the damping ratio increases.  相似文献   

2.
Laboratory resonant column and cyclic triaxial tests are performed to determine the dynamic response (i.e. shear modulus and damping) of chemically grouted sand. The effect of chemical grouting is evaluated as a function of shearing-strain amplitude, confining stress, cycling prestrain, number of cycles, grout type, concentration, and curing time. The test results show that the shearing-strain amplitude, grout type and grout concentration have significant effects on the shear modulus and damping ratio of the test specimens. The increased addition of sodium silicate grout, which produces stiff gels, improved the shear modulus of the test sand. The acrylate (AC-400) and polyurethane (CG5610) grout, which produces flexible (rubber-like) gels, improved the damping capacity of the sand with increasing grout concentration. The addition of chemical grout greatly reduces the effect of cyclic prestraining over untreated sands. In the case of dense sands, the reduction of cyclic prestraining is less pronounced than in loose sands, which have a higher potential for particle movement and reorientation.  相似文献   

3.
Torsional resonant column and bender element tests were conducted on microfine and ordinary cement grouted sands and the effects of confining pressure, shear strain, grout water-to-cement (W/C) ratio, cement type and gradation on the dynamic properties were evaluated. The shear and initial Young's moduli of the grouted sands increased with increasing confining pressure and decreasing shear strain, while damping ratio had the opposite behavior. The grout W/C ratio had the strongest effect on the values of the dynamic properties of the grouted sands, followed by cement grain size and cement pozzolan content. Depending on grout W/C ratio and confining pressure, the shear and initial Young's moduli values and the damping ratio values of the clean sands were improved by a factor of 4–25 and 2–6, respectively. The effect of testing conditions or material parameters on the Poisson ratio values of the grouted sands was negligible.  相似文献   

4.
A rock bolt installed in the field for ground support has only one short exposed end on the rock surface. This condition has posed challenges in field instrumentation. In this paper, a new approach for field monitoring of grouted rock bolts using guided ultrasonic waves is proposed with the receiving transducer on the grout surface near the exposed end of the bolt. The effects of the receiver location are studied with numerical modeling. A location correction factor is introduced to correlate the amplitude ratio along the bolt and that on the grout surface. Experiments are conducted to verify the modeling results. This research indicates that it is practically possible to receive meaningful signals with the receiver on the grout surface and that with the recorded data the attenuation and wave velocity of guided waves in grouted rock bolts can be determined with reasonable accuracy. The proper receiver location is found to be 27 to 32 mm from the bolt center for the test condition.  相似文献   

5.
Cyclic triaxial tests were performed to investigate the influence of colloidal silica grout on the deformation properties of saturated loose sand. Distinctly different deformation properties were observed between grouted and ungrouted samples. Untreated samples developed very little axial strain prior to the onset of liquefaction. However, once liquefaction was triggered, large strains occurred rapidly and the samples collapsed within a few additional loading cycles. In contrast, grouted sand samples experienced very little strain during cyclic loading. Additionally, the strain accumulated uniformly throughout loading rather than rapidly prior to collapse and the samples never collapsed. Cyclic triaxial tests were done on samples stabilized with colloidal silica at concentrations of 5, 10, 15, and 20%. In general, samples stabilized with higher concentrations of colloidal silica experienced very little strain during cyclic loading. Sands stabilized with lower concentrations tolerated cyclic loading well, but experienced slightly more strain. Thus, treatment with colloidal silica grout significantly increased the deformation resistance of loose sand to cyclic loading.  相似文献   

6.
In this paper, the guided ultrasonic wave propagating in grouted rock bolts was simulated with finite element method. An 800 mm partially grouted cylindrical rock bolt model was created. Dynamic input signals with frequency from 25 to 100 kHz were used to excite ultrasonic wave. The simulated waveform, group velocity and amplitude ratio matched well with the experimental results. This model made it possible to study the behaviour of the guided waves in the grouted bolt along its central axis. Analysis of the simulated results showed that the group velocity in grouted rock bolts is constant along the grouted length, and the boundary effect on the group velocity is negligible. This paper also presents methods to determine the attenuation coefficient from simulation and to determine the boundary effect on attenuation at the bolt ends. The analysis showed that the attenuation of the guided wave propagating inside the grouted bolts is similar to the theoretical solution in steel bar with infinite length. After correction for the boundary effects the grout length of a grouted rock bolt can be determined using the measured attenuation, with sufficient accuracy.  相似文献   

7.
In regions of low to moderate seismicity in North America, reinforced masonry structures are mostly partially grouted. The behavior of such structures under lateral seismic loads is complicated because of the interaction of the grouted and ungrouted masonry. As revealed in past experimental studies, the performance of partially grouted masonry (PGM) walls under in-plane cyclic lateral loading is inferior to that of fully grouted walls. However, the dynamic behavior of a PGM wall system under severe seismic loads is not well understood. In this study, a full-scale, one-story, PGM building designed for a moderate seismic zone according to current code provisions was tested on a shake table. It was shown that the structure was able to develop an adequate base shear capacity and withstand two earthquake motions that had an effective intensity of two times the maximum considered earthquake with only moderate cracking in mortar joints. However, the structure eventually failed in a brittle manner in a subsequent motion that had a slightly lower effective intensity. A detailed finite element model of the test structure has been developed and validated. The model has been used to understand the distribution of the lateral force resistance among the wall components and to evaluate the shear-strength equation given in the design code. The code equation has been found to be adequate for this structure. Furthermore, a parametric study conducted with the finite element model has shown that the introduction of a continuous bond beam right below a window opening is highly beneficial.  相似文献   

8.
顺层岩质边坡的抗震性指标大部分都是非确定的,无法用固定阈值衡量。提出基于非确定性分析法的顺层边坡抗震性性能研究,将顺层岩质边坡看作若干个叠加的薄板;运用非确定性分析法计算各个薄板的动力安全系数和动力极限状态方程,并对顺层边坡动力极限状态方程进行求解,可得在地震作用力下顺层边坡动力可靠度指标与顺层边坡失效概率之间的关系;评估地震作用力下顺层边坡整体稳定性,同时综合考量顺岩边坡的最小平均安全系数以及平均失效概率,得出评估结果。实验结果显示,在地震作用力下,顺层边坡坡高、坡角、岩层倾角对顺岩边坡抗震性能影响显著,评估结果与实际结果一致。  相似文献   

9.
孤岛工作面动力灾害预防控制方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究孤岛工作面安全开采方法,理论分析其动力灾害多发的岩层运动及应力条件,并提出其安全开采的准则。认为只要合理设计开采参数,就可以避免孤岛工作面动力灾害的发生。分析表明:孤岛工作面长度大于相邻工作面支承压力影响范围之和时,孤岛工作面支承压力无法叠加,工作面较安全;相邻工作面长度大于关键层断裂步距时,覆岩关键层可充分塌垮,孤岛工作面无动压冲击危险;在稳定的内应力场开掘回采巷道时,回采巷道无冲击危险。  相似文献   

10.
Crack widths and rock temperatures were monitored on an andestic bedrock cliff in the summit area of the Daisetsu Mountains, Hokkaido, northern Japan. Sequential data recorded the gradual widening of a crack to the point of critical crack extension, which resulted in catastrophic rock breakage. The data indicate that a combination of liquid water in?ltration into crack tip and subsequent freezing is the most signi?cant factor contributing to critical crack extension. The recorded sub‐critical crack movements involved a number of minor crack extensions and contractions, the timing of which correlates well with the magnitude of the reconstructed thermal stresses at the crack tip derived from thermal deformation of the plate‐shaped rock fragment. Larger crack extensions occurred when stress at the crack tip exceeded a threshold value, possibly re?ecting the control of rock fracture mechanics by which cracks are thought to propagate when the stress intensity factor at the crack tip exceeds the threshold values for stress corrosion cracking and the fracture toughness of the material. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
浆固碎石桩成桩注浆渗透影响分析   总被引:1,自引:0,他引:1  
浆固碎石桩作为一种新型软土地基处理技术,其主要通过注浆改善桩体的加固效果,同时通过浆体渗透来改善桩周土体的物理力学性质,从而减小浆固碎石桩复合地基沉降。针对浆体对桩周土体的渗透作用,按照平面轴对称问题,推导出注浆渗透影响范围的计算方法和浆固区压缩模量计算公式,并通过室内模型试验研究,验证了浆固区压缩模量计算公式的正确性。随后,利用数值计算分析,对浆固区影响范围进行量化分析,并通过数值拟合得到了考虑注浆渗透影响的桩体等效半径计算公式。所得结果对工程设计具有重要的指导意义。  相似文献   

12.
In this study, the coupled horizontal–vertical behavior of elastomeric bearings subjected to dynamic loading is studied in detail. Under extreme dynamic loading, elastomeric bearings exhibit unstable behavior and an instantaneous loss of horizontal stiffness that is recoverable. Building on an earlier study where the authors developed an analytical model for the horizontal behavior of bearings under dynamic loads, in this study, a new analytical model for the coupled horizontal–vertical behavior of the bearings is developed. The coupled behavior of the bearing is first studied for quasi‐static loading, and later, the behavior of the bearings under dynamic loading is studied. A clear distinction is made between different types of deformation the bearing undergoes in the vertical direction. Based on experimental results, it is observed that the behavior of the bearings under dynamic loading differs markedly from that observed under static loading. A new analytical model is proposed that can account for the coupled horizontal–vertical behavior of the bearings under dynamic loading. The proposed analytical model for predicting the post‐stability vertical behavior of the bearings is verified using experimental results. The model proposed is found to successfully predict the coupled horizontal–vertical behavior of elastomeric bearings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The 1999 Chiayi M 6.4 earthquake sequence that occurred about one month after the 1999 Chi-Chi M 7.6 earthquake is remarkably similar to the Ruey-Li M 6.2 earthquake sequence which occurred one year before the big Chi-Chi event. Both sequences were energetic and short in duration; with events confined in small source volumes, and the fault-plane orientation of individual events in these sequences varied abruptly during the development of the dynamic rupture. Both occurred on the southern extension of the large Chelungpu rupture causal to the Chi-Chi event, and in an area of highly fractured upper crust. We consider that this faulting behavior is due to the rupture-induced dynamic stress that interacts with the pre-existing highly fractured upper crust and continually perturbs the local stress field. This phenomenon appears to be typical of particularly active plate boundary regions with a highly fractured upper crust under intense tectonic loading.  相似文献   

14.
中国大陆现今实测地应力场的状态与板块构造环境、活动断裂带分布、地形地貌以及地壳结构呈现一定相关性. 在中国大陆西缘,印度洋板块与欧亚板块陆发生陆碰撞,在中国大陆东缘,菲律宾海板块、太平洋板块俯冲到欧亚板块之下. 中国大陆内部被大型活动断裂带分割为多个块体,各个块体的地壳结构和厚度呈不均匀分布,地形地貌起伏具有很大的差异. 笔者以中国大陆块体模型为基础,把板块构造作用和重力势作为主要影响地应力状态的两个主要要素,在现今活动构造、GPS和实测地应力等成果的约束下,利用线性黏弹体球壳有限元模拟分析了中国大陆现今地应力场的分布特征和控制因素. 结果表明: (1)构造应力场总体上呈现出西部挤压,东部拉张的特征,印度板块与欧亚板块的持续碰撞形成了青藏高原及其周缘的挤压性质的构造应力场,而东部菲律宾板块与太平洋板块的俯冲形成了黄海、东海和环渤海区域的拉张性质的构造应力场,中间为拉张环境和挤压环境的过渡,最大主应力的方向受到板块构造环境和活动构造分布的控制;(2)重力的影响主要体现在地形梯度大和地壳厚度结构变化大的地壳浅部区域,在藏南、滇西北局部地区的地壳浅部由于受到重力势控制,呈现为张性应力场,在塔里木地区由于重力势引起的应力场与构造应力场同为挤压性质,因此该区的挤压强度得以增加;(3)中国大陆浅部地应力场的状态主要受到区域板块构造环境、块体边界活动构造带的展布和地形的控制,总体上以南北构造带为界,西部以较强的压性构造环境为主,东部为较弱的压性构造环境,藏南和滇西北局部地区存在有张性构造环境;构造应力对地应力的贡献比重随着深度增加而增加;(4)采用黏弹性模型的构造应力场模拟结果比完全弹性模型的模拟结果能够更好地与实测地应力场相吻合,利用完全弹性模型分析由地震等诱发的地应力瞬时变化是有效的;(5)青藏高原东南缘最大主应力方向发生了较大的偏转,其主要控制因素有:印度板块持续的碰撞、中下地壳对上地壳拖曳以及印度板块通过实皆断裂对欧亚板块的剪切拉伸作用. 中国大陆现今地应力场是整个地壳岩石黏弹特性长期演化和断裂活动的结果,是地应力场动态演化过程中在现今时间点上的状态,受到板块构造环境、大陆内部活动断裂分布、地形地貌和地壳结构等因素不同程度的控制,模拟结果为中国大陆地应力场提供了一个定量的参考模型.  相似文献   

15.
不同加载速率下煤岩单轴压缩电荷感应规律研究   总被引:8,自引:2,他引:6       下载免费PDF全文
利用自主研制的电荷感应仪,建立单轴压缩条件下煤岩电荷感应试验系统.研究了煤、花岗岩、砂岩在不同加载速率下的电荷感应规律.试验结果表明:煤岩电荷感应最大值在应力达到极限强度前出现,且随加载速率增加,电荷最大值比应力极限强度提前出现时间有减短趋势.不同性质煤岩体,电荷感应最大值有较大区别,花岗岩电荷最大值大于煤电荷最大值,煤电荷最大值大于砂岩电荷最大值.当应力较小时,煤岩只产生微量的电荷信号,当应力达到煤岩极限应力的90%左右时产生大量的电荷信号,说明煤岩电荷感应存在应力阈值.因此,电荷感应方法作为预测预报动力灾害是可行的,值得深入研究.  相似文献   

16.
青藏高原现代地壳运动与活动断裂带关系的模拟实验   总被引:15,自引:4,他引:11       下载免费PDF全文
本文以GPS观测、大地热流测量、较高精度地形数据、全球板块相对运动的REVEL模型为基础,建立了以青藏高原现代构造活动为主要研究对象的东亚地区构造形变场有限元模型.数值模拟结果显示,青藏高原内部和周边地区走滑断裂带的活动对东亚地区地壳运动速率和方向有较大的影响,特别是对青藏高原物质向东南方向运动有显著影响;不同构造块体岩石圈强度的差异直接影响了川滇菱形地块边界断层错动性质.在考虑青藏高原地形附加重力作用和周边板块汇聚作用对现今大型断裂带运动特征控制作用的同时,岩石圈之下的橄榄岩软流圈至转换带物质对流对岩石圈的拖曳力也是必须考虑的底部边界条件.  相似文献   

17.
梁柱节点是钢框架的关键连接部分,其连接性能直接影响框架结构在荷载作用下的整体行为。采用有限元法对刚性梁柱全焊节点的力学性能进行数值模拟,分析不同受力条件下全焊节点的力学行为,揭示不同弯矩作用时刚性梁沿长度方向的Mises应力变化特性,并对比分析有无水平加劲肋对全焊节点位移和Mises应力的影响规律。结果表明:有水平加劲肋的全焊节点总位移明显小于无水平加劲肋的,弯矩为65kN·m时,有水平加劲肋与无水平加劲肋全焊节点位移差值出现突变,且有水平加劲肋时,全焊节点转角随着所施弯矩的增大近似呈指数变化;无论有无水平加劲肋,Mises应力值从悬臂梁自由边缘到梁柱连接节点逐渐增大,梁与柱连接节点的Mises应力值较大,柱腹板节点域的Mises应力值最大。对比发现,有水平加劲肋时,悬臂梁及柱腹板节点域的Mises应力明显小于无水平加劲肋时的。由此可见,水平加劲肋可有效提高刚性梁柱全焊节点的承载能力,并有效防止节点处应力集中。  相似文献   

18.
在隧道的施工和运营中,隧道衬砌不可避免会产生裂纹。裂纹和地震荷载的相互作用将加剧隧道的破坏,因此研究带裂纹隧道衬砌地震荷载作用下的破坏具有重要的意义。为了证明本文二维有限元数值模拟计算结果的正确性,首先用相互作用积分的方法计算动载作用下的静态裂纹,并与解析解进行比对,发现二者的吻合性很好。计算结果表明相互作用积分法可以用来精确地计算动载作用下带裂纹结构的动应力强度因子。用这种经过验证的方法来计算带裂纹重载铁路隧道衬砌的动应力强度因子和动承载力安全系数,可以看出在地震荷载作用下,I型裂纹的动应力强度因子在隧道结构的安全中起控制作用。当裂纹的长度大于某特定值时,隧道处于很危险的状态。  相似文献   

19.
循环荷载下饱和岩石的滞后和衰减   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对饱和砂岩和大理岩的循环荷载实验,分析了饱和岩石在循环荷载下的应力-应变滞后回线、瞬时杨氏模量、泊松比的“X”形变化曲线,以及杨氏模量随应变振幅的增加而减少等滞后现象,并分析了施加外力的应变振幅对衰减的影响,认为岩石在循环荷载作用下的衰减与应变振幅成正比,提出的衰减b值反映了岩石在循环荷载作用下衰减的程度. 岩石的衰减和滞后存在密切的关系,通过饱和岩石的宏观行为,探讨了饱和岩石在循环荷载下的滞后和衰减现象的微观机理,认为孔隙流体流动在岩石的滞后和衰减中起着重要作用,岩石内部的颗粒接触粘合和黏滑摩擦可能是孔隙岩石在循环荷载作用下产生滞后和衰减的原因.  相似文献   

20.
This paper's primary purpose is to compare the 2D and 3D analysis methodologies in investigating the performance of a concrete faced rock‐fill dams under dynamic loading conditions. The state of stress on the face plate was obtained in both cases using a total strain based crack model to predict the spreading of cracks on the plate and the corresponding crack widths. Results of the 2D and 3D analyses agree well. Although significantly more demanding, 3D analyses have the advantage of predicting the following: (i) the opening of the vertical construction joints; (ii) the cracking at the valley sides; and (iii) the crushing of the plate during the seismic action. During the earthquake loading, the cracking predicted at the base of the face plate after the impounding spread significantly towards the crest of the dam; however, the crack widths are obtained relatively small. Crushing of the face plates at the construction joints is the primary cause of the large scale cracking predicted on the face plate for high intensity earthquakes. Earthquake induced permanent deformation of the fill increases the compressive stresses on the face plate, thereby reducing the minute cracking on the plate. However, this effect also leads to significant increases in the residual openings at the construction joints and at the plinth level. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号