首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While many cases of structural damage in past earthquakes have been attributed to strong vertical ground shaking, our understanding of vertical seismic load effects and their influence on collapse mechanisms of buildings is limited. This study quantifies ground motion parameters that are capable of predicting trends in building collapse because of vertical shaking, identifies the types of buildings that are most likely affected by strong vertical ground motions, and investigates the relationship between element level responses and structural collapse under multi‐directional shaking. To do so, two sets of incremental dynamic analyses (IDA) are run on five nonlinear building models of varying height, geometry, and design era. The first IDA is run using the horizontal component alone; the second IDA applies the vertical and horizontal motions simultaneously. When ground motion parameters are considered independently, acceleration‐based measures of the vertical shaking best predict trends in building collapse associated with vertical shaking. When multiple parameters are considered, Housner intensity (SI), computed as a ratio between vertical and horizontal components of a record (SIV/SIH), predicts the significance of vertical shaking for collapse. The building with extensive structural cantilevered members is the most influenced by vertical ground shaking, but all frame structures (with either flexural and shear critical columns) are impacted. In addition, the load effect from vertical ground motions is found to be significantly larger than the nominal value used in US building design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Allowing flexible structures to uplift and rock during earthquakes can significantly reduce the force demands and residual displacements. However, such structures are still susceptible to large deformations and accelerations that can compromise their functionality. In this paper, we examine the dynamic response of elastic rocking oscillators and suggest that their lateral drifts and accelerations can be limited effectively by using inerter devices. To this end, we offer a detailed examination of the effects of structural flexibility on the efficiency of the proposed system. The analytical expressions governing the motion of deformable structures with base uplift are revisited to incorporate the effects of the supplemental rotational inertia. The proposed model is then used to study the structural demands of flexible rocking structures under coherent pulses as well as noncoherent real pulse-like ground motions. Our results show that combining rocking with inerters can be an efficient strategy to control the deformation and acceleration demands in uplifting flexible systems.  相似文献   

3.
以北京地铁6号线新华大街站公共区Y型柱地铁车站为工程背景,利用FLAC3D有限差分程序数值模拟分析,研究超浅埋大跨度、高断面、Y形柱地铁车站结构分别在仅输入水平向地震动和同时输入水平向与竖向地震动情况下的地震响应特性。结果表明:(1)与仅输入单向地震动相比,双向地震动耦合作用下车站各测点的峰值加速度和应力值均增大,而相对水平位移减小,且随着输入地震动强度的增加,竖向地震动影响率呈递减趋势;(2)双向地震动作用下,同一工况Y形柱叉支处各测点的竖向位移明显增大,且各测点的竖向位移值较为均匀,而单向水平地震动作用下各测点竖向位移差异较大;(3)与单向水平地震动相比,竖向地震动的输入对各测点间的水平方向地震动特性规律影响较小。  相似文献   

4.
Site response to earthquake loading is one of the fundamental problems in geotechnical earthquake engineering. Most site response analyses assume vertically propagating shear waves in a horizontally layered soil–rock system and simply ignore the effect of site response to vertical earthquake motion, although actual ground motions are comprised of both horizontal and vertical components. In several recent earthquakes very strong vertical ground motions have been recorded, raising great concern over the potential effect of vertical motion on engineering structures. Being a step toward addressing this concern, this paper presents a simple and practical procedure for analysis of site response to both horizontal and vertical earthquake motions. The procedure involves the use of the dynamic stiffness matrix method and equivalent-linear approach, and is built in the modern MATLAB environment to take full advantages of the matrix operations in MATLAB. The input motions can be specified at the soil–bedrock interface or at a rock outcropping. A detailed assessment of the procedure is given, which shows that the procedure is able to produce acceptable predictions of both vertical and horizontal site responses.  相似文献   

5.
Effect of tilt on strong motion data processing   总被引:5,自引:2,他引:5  
In the near-field of an earthquake the effects of the rotational components of ground motion may not be negligible compared to the effects of translational motions. Analyses of the equations of motion of horizontal and vertical pendulums show that horizontal sensors are sensitive not only to translational motion but also to tilts. Ignoring this tilt sensitivity may produce unreliable results, especially in calculations of permanent displacements and long-period calculations. In contrast to horizontal sensors, vertical sensors do not have these limitations, since they are less sensitive to tilts. In general, only six-component systems measuring rotations and accelerations, or three-component systems similar to systems used in inertial navigation assuring purely translational motion of accelerometers can be used to calculate residual displacements.  相似文献   

6.
An effort is made to examine the properties of rotational (torsional and rocking) ground motions using Chiba dense array data. The Chiba array system, located 30 km east of Tokyo, Japan, is composed of 15 boreholes with separation distances varying from 5 to 320 m. This provides a unique opportunity to examine the characteristics of rotational components. For this purpose, 17 events are considered and rotational ground motions are evaluated using spatial derivatives of translational ones. The effects of seismological parameters and separation distances between stations on properties of rotational motions are examined, showing a sudden increase in rotational motions for the earthquakes with large magnitude or PGA and decrease of these motions with increasing separation distance. While the duration of torsional motion is found to be larger than translational ones, there is no significant difference between durations of rocking and vertical motions. The effects of separation distance and earthquake magnitude on rotational response spectra are also investigated. The normalized rotational response spectra are found to be strongly affected by separation distance. The spectral ratios of rotational and translational motions are not linearly proportional to period as suggested by the previous studies. Finally, the torsional motion is predicted from translation ones for different separation distances at the site. The comparison of the predicted and the calculated torsional motions reveals a weak estimation in close separation distances (<30m) and satisfactory predictions in other cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

8.
自贡市西山公园地形对地震动的影响   总被引:22,自引:2,他引:20       下载免费PDF全文
不规则地形和土层对地震动的影响较大,建(构)筑物选址及其抗震设防必须考虑地形和土层场地的放大效应,以避免或减轻其震害.利用自贡地形台阵记录的汶川地震(Ms8.0)的主震加速度时程,基于传统谱比法分别研究了地形和土层场地对地震动的放大效应.结果表明:(1)地形场地在低频的放大效应不明显,最大仅为1.24;在高频的放大效应较显著,在1~10 Hz频带,山顶的放大效应最大,EW、NS和UD地震动的最大放大效应分别为4.15、3.61和2.41,对应频率分别为5.72 Hz、6.46 Hz和7.44 Hz;在10~20 Hz频带,靠近山顶的山脊上某个地震动分量的放大效应最大,7#台站EW、5#台站NS和7#台站UD地震动的最大放大效应分别为9.10、5.56和2.52,对应频率分别为16.97 Hz、16.91 Hz和17.91 Hz.(2)地形场地的最大放大效应随高度有增加的趋势,且在0.1~10 Hz频带随高度增加的趋势更加明显.(3)土层场地水平向地震动在2 Hz以上开始明显放大,竖向地震动在4 Hz以上开始明显放大;EW、NS和UD地震动的最大放大效应分别为13.4、12.168和6.0,对应频率分别为6.94 Hz、7.55 Hz和10.8 Hz.(4)土层场地与地形场地的最大放大效应相比较,前者显著大于后者,对于水平向地震动,前者至少是后者的3倍以上;对于竖向地震动,前者至少是后者的2.5倍以上.(5)无论是地形场地还是土层场地,地震动的最大放大效应均有水平向大于竖向的特征.  相似文献   

9.
Rocking column-foundation system is a new design concept for bridges that can reduce overall seismic damage, minimize construction and repair time, and achieve lower cost in general. However, such system involves complex dynamic responses due to impacts and highly nonlinear rocking behavior. This study presents a dimensionless regression analysis to estimate the rocking and shaking responses of the flexible column-foundation system under near-fault ground motions. First, the transient drift and rocking responses of the system are solved numerically using previously established analytical models. Subsequently, the peak column drifts and uplift angles are derived as functions of ground motion characteristics and the geometric and dynamic parameters of column-foundation system in regressed dimensionless forms. The proposed response models are further examined by validating against the numerical simulations for several as-built bridge cases. It is shown that the proposed model not only physically quantifies the influences of prominent parameters, but also consistently reflects the complex dynamics of the system. The seismic demands of rocking column-foundation system can be realistically predicted directly from structural and ground motion characteristics. This can significantly benefit the design of bridges incorporating this new design concept.  相似文献   

10.
汶川8.0级地震陕西省数字强震动记录分析   总被引:2,自引:0,他引:2  
本文对2008年5月12日四川汶川8.0级地震陕西数字强震动台网27个台的地震加速度记录进行了处理和分析,包括对加速度波形数据的基线调整、滤波、加速度反应谱计算,以及速度和位移计算。结果表明:除局部场地条件的影响外,大地震的能量辐射方向和传播路径中介质的横向不均匀对PGAH衰减的离散性可能有一些影响; 对于同一烈度值,PGA/PGV较小,PGA在数值上平均只有PGV的5倍左右,反映了地震动的低频成分比较丰富; 绝大部分强震台所处地区的烈度为Ⅴ—Ⅶ度; PGAH与水平单分向加速度峰值PGA(E-W)和PGA(N-S)中较大值之间的相对偏差绝大部分小于10%; 波形的性质为面波,盆地中覆盖土层较厚的场地长周期的面波更为发育,波列持续时间较长; 局部场地的介质特性对地震动特征有相当大的影响,盆地中较厚的覆盖土层对较长周期的地震波有明显的放大作用。  相似文献   

11.
This paper presents a methodology for constructing seismic design spectra in near-fault regions.By analyzing the characteristics of near-fault pulse-type ground motions,an equivalent pulse model is proposed,which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions.The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions,which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations.The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions.The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense.The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.  相似文献   

12.
It is shown that the common response spectrum method for synchronous ground motion can be extended to make it applicable for earthquake response analyses of extended structures experiencing differential out-of-plane ground motion. A relative displacement spectrum for design of first-story columns SDC (T, TT, ζ, ζT, τ, δ) is defined. In addition to the natural period of the out-of-plane response, T, and the corresponding fraction of critical damping, ζ, this spectrum also depends on the fundamental period of torsional vibrations, TT, and the corresponding fraction of critical damping, ζT, on the “travel time,” τ (of the waves in the soil over a distance of about one-half the length of the structure), and on a dimensionless factor δ, describing the relative response of the first floor. The new spectrum, SDC, can be estimated by using the empirical scaling equations for relative displacement spectra, SD, and for peak ground velocity, vmax. For recorded strong-motion acceleration, and for symmetric buildings, the new spectrum can be computed from Duhamel's integrals of two uncoupled equations for dynamics equilibrium describing translation and rotation of a two-degree-of-freedom system. This representation is accurate when the energy of the strong-motion is carried by waves in the ground the wavelengths of which are one order of magnitude or more longer than the characteristic length of the structure.  相似文献   

13.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
近断层地震动中长周期、短持时和高能量的加速度脉冲将对高层摩擦摆基础隔震结构的减震性能产生不利影响,考虑土-结构相互作用(SSI效应)后的隔震结构将产生动力耦合效应,可能进一步放大隔震结构地震响应。为此,通过一幢框架-核心筒高层摩擦摆基础隔震结构的非线性地震响应分析,考察近断层脉冲型地震动作用下框架-核心筒摩擦摆基础隔震结构的层间位移角、楼层加速度和隔震层变形等响应规律,揭示隔震体系的损伤机理。基于集总参数SR (sway-rocking)模型,分析不同场地类别与不同地震动类型对隔震体系动力响应影响规律。结果表明:高层摩擦摆基础隔震结构在近断层脉冲型地震动作用下的减震效果相比普通地震动减震效果变差,楼层剪力、层间位移角和隔震层变形等超越普通地震动作用下的1.5倍;对于Ⅲ和Ⅳ类场地类别,考虑SSI效应使隔震结构的地震响应进一步放大,弹塑性层间位移角随着土质变软增大尤为明显。  相似文献   

15.
近断层竖向与水平向加速度反应谱比值特征   总被引:4,自引:2,他引:2       下载免费PDF全文
显著的竖向地震动是近断层地震动区别于远场地震动的重要特征之一,为更合理地确定竖向地震动作用,研究了近断层区域竖向地震动的反应谱特征及其与水平向反应谱比值的影响因素.首先,选取1952—1999年世界范围内震级在M5.4—7.6之间的18次地震的地震动记录,研究竖向地震加速度反应谱及其与水平向加速度反应谱比值特征;然后统计分析了断层距、场地条件、震级以及断层机制对竖向与水平向加速度反应谱比的影响.结果表明,一般情况下竖向加速度具有更丰富的短周期分量,并且竖向加速度反应谱衰减较慢;断层距在20km以内的近断层区域、软弱土层场地、中等震级地震和逆断层大震级中长周期范围等条件下,具有较大的竖向与水平向加速度反应谱比值;在近断层区域的结构抗震设计中应充分考虑竖向地震动的影响.  相似文献   

16.
The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of seawater on incident plane P and SV waves at ocean bottom indicate that on one hand, the affected frequency range of vertical ground motions is prominent due to P wave resonance in the water layer if the impedance ratio between the seawater and the underlying medium is large, but it is greatly suppressed if the impedance ratio is small; on the other hand, for the ocean bottom interface model selected herein, vertical ground motions consisting of mostly P waves are more easily affected by seawater than those dominated by SV waves. The statistical analysis of engineering parameters of offshore ground motion records indicate that:(1) Under the infl uence of softer surface soil at the seafl oor, both horizontal and vertical spectral accelerations of offshore motions are exaggerated at long period components, which leads to the peak spectral values moving to a longer period.(2) The spectral ratios(V/H) of offshore ground motions are much smaller than onshore ground motions near the P wave resonant frequencies in the water layer; and as the period becomes larger, the effect of seawater becomes smaller, which leads to a similar V/H at intermediate periods(near 2 s). These results are consistent with the conclusions of Boore and Smith(1999), but the V/H of offshore motion may be smaller than the onshore ground motions at longer periods(more than 5 s).  相似文献   

17.
刘甲美  高孟潭  陈鲲 《地震学报》2015,37(5):865-874
地形对地震动的影响比较复杂, 考虑地形放大效应的地震滑坡稳定性分析需要选择合适的地震动参数. 本文使用自贡地形影响台阵记录到的2008年汶川MS8.0地震主震加速度记录, 分析了地震动峰值加速度、 阿里亚斯烈度以及90%能量持时随地形高度的变化, 探讨了地形效应作用下峰值加速度和阿里亚斯烈度与地震动作用下斜坡稳定性的相关性. 结果表明: ① 地形场地对峰值加速度和阿里亚斯烈度均有显著的放大效应. 地形放大效应较为复杂, 其整体上随台站高度的增加而增大, 水平向的放大效应大于竖直向. 水平向峰值加速度的放大系数为1.1—1.8, 阿里亚斯烈度的放大系数为1.2—3.3; 竖直向相应放大系数分别为1.1—1.3和1.2—1.7. ② 地形对地震动持时也有一定的放大效应, 但不同高度、 不同分量的放大效应没有显著差异, 其放大系数均约为1.3. ③ 阿里亚斯烈度和峰值加速度均能很好地表征地形对地震动的影响, 与地震动对斜坡稳定性的影响具有很强的相关性. 与峰值加速度相比, 阿里亚斯烈度综合了地震动的多方面特征, 可以更好地表征地形对地震动的影响, 与地震动作用下斜坡稳定性的相关性更强.   相似文献   

18.
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.  相似文献   

19.
2015年尼泊尔Gorkha地震强地面运动记录分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2015年4月25日在尼泊尔Gorkha地区发生MW7.8地震,距离发震断层约11 km的KATNP台站完整记录了主震的加速度时程.本文根据KATNP台站记录的加速度数据分析了Gorkha地震的地震动特征.结果表明Gorkha地震在KATNP台站处产生的水平向峰值加速度为0.17 g,竖直向峰值加速度为0.19 g,该数值小于科学家们对如此大规模地震产生的地震动的预期,初步推测这可能是由加德满都山谷产生的非线性响应造成的(Dixit et al.,2015);地震在KATNP台站处产生了地表永久位移,其中竖向永久位移为131.9 cm,水平向永久位移的绝对值为159.2 cm,方向为南偏西19°(199°),据此可简单推算出断层走向约为289°(109°).地震产生了脉冲型地震动,影响因素有盆地效应、地震破裂的向前的方向性效应以及滑冲效应,其中盆地效应的周期约为5 s左右,方向性效应产生的速度脉冲的周期约为8 s左右.加速度反应谱显示在0.5 s和5.0 s左右各有一个峰值,前者是由地震破裂的脉冲式滑移产生的大量高频地震动造成的,后者是由于盆地效应和地震破裂的方向性效应造成的.基于阿里亚斯烈度计算的地震动持时约在36~46 s之间,小于与其规模相当的地震产生的地震动持时,并且不同方向上的地震动持时可能与地震破裂方向有关.阿里亚斯烈度随时间的变化比较简单,也反映了Gorkha地震是一次连续的、能量释放相对简单的地震事件.  相似文献   

20.
Seismic behavior of variable frequency pendulum isolator   总被引:3,自引:1,他引:2  
Earthquake performance of a flexible one-story building isolated with a variable frequency pendulum isolator (VFPI) under near-fault and far-field ground motions is investigated. The frictional forces mobilized at the interface of the VFPI are assumed to be velocity dependent. The interaction between frictional forces of the VFPI in two horizontal directions is duly considered and coupled differential equations of motion of the isolated system in the incremental form are solved iteratively. The response of the system with bi-directional interaction is compared with those without interaction. In addition, the effects of velocity dependence on the response of the isolated system are also investigated. Moreover, a parametric study is carried out to critically examine the influence of important parameters on bi-directional interaction effects of the frictional forces of the VFPI. These parameters are: the superstructure time period, frequency variation factor (FVF) and friction coefficient of the VFPI. From the above investigations, it is observed that the dependence of the friction coefficient on relative velocity of the system does not have a noticeable effect on the peak response of the system isolated with VFPI, and that the bi-directional interaction of frictional forces of the VFPI is important and if neglected, isolator displacements will be underestimated and the superstructure acceleration and base shear will be overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号