首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赤铁矿和针铁矿是自然界中最稳定的两种铁氧化物,广泛存在于地球的各个圈层。很多沉积物的颜色都是由它们引 起的,它们的形成和保存具有重要的环境指示意义。实验室中赤铁矿和针铁矿的表征和鉴定手段很多,但受其含量低、结 晶差、颗粒细小难分离等因素的困扰以及某些测试方法自身的限制,能用于铁氧化物定量分析的方法很少。文中就常用的 基于X射线衍射(XRD) 和漫反射光谱(DRS) 的铁氧化物定量方法进行了系统评价。在定性分析的基础上,采用基于 XRD的K值法获得西藏床得剖面红色页岩中赤铁矿的含量为3.81%~8.11%,采用DRS与多元线性回归相结合的方法获得北 大西洋ODP1049C孔12X岩芯段棕色层中赤铁矿和针铁矿的含量分别为0.13%~0.82%和0.22%~0.81%,橙色层中赤铁矿和 针铁矿的含量分别为0.19%~0.46%和0.29%~0.67%。与其它分析结果的比较表明,这两种定量方法在白垩纪大洋红层中的 应用是可行的。但在实际应用时,首先要通过XRD和DRS相结合来提高定性分析的准确性,然后通过综合分析铁氧化物的 预判含量范围和结晶程度来选择合适的定量方法。  相似文献   

2.
Samples of Turonian white to light gray and red limestones from the Vispi Quarry section in central Italy have been examined by X-ray Diffractometry (XRD), Electron Probe Micro-analysis (EPMA), Electron Spin Resonance (ESR), and Ultra violet-visible-near infrared (UV-VIS-NIR) Diffuse Reflectance Spectroscopy (DRS). The ESR, EPMA and XRD results suggest that Mn2+ was well-incorporated into the structure of calcite during the precipitation of the limestones. Amorphous ferric oxide (most probably hematite) and the Mn2+-bearing calcite endowed the limestone with a red color as the major pigmentation, and the Mn2+-bearing calcite gave it a pink tinge. The mineral assemblage is composed mainly of detrital boehmite and quartz, which are interpreted as having been imported from the Eurasian paleo-continent into the ocean by seasonal northeasterly winds. The boehmite formed by dehydration of gibbsite as an end-product of intensive chemical weathering of Fe, Mg, and Al-bearing aluminosilicates exposed in a subtropical environment. XRD results for the residues of Cretaceous Oceanic Red Beds (CORBs) dissolved in dilute acetum differed from those from Cretaceous Oceanic White Beds (COWBs) in that they contain hematite. This suggests that no hematite was imported into the ocean during the precipitation of the white limestone, and may explain why the same detrital origin for red and white limestones resulted in different colors by suggesting that climatic variations occurred on the paleo-continent during the precipitation of these two types of limestone. The presence of boehmite and hematite suggests that, during the Late Cretaceous, central Italy lay within a subtropical climatic zone with a seasonal alternation of warm rainy winters and hot, dry summers during the formation of the CORBs, and a continuously warm climate during the formation of the COWBs. The Mn/Fe(mol) ratios in the shells of spherical carbonate assemblages (probable microfossils) suggested that the ocean was much richer in iron during the precipitation of COWBs.  相似文献   

3.
The planktic foraminifera of the Chuangde Formation (Upper Cretaceous Oceanic Red Beds, CORBs) as exposed at Tianbadong section, Kangmar, southern Tibet has been firstly studied for a detailed for a detailed biostratigraphy elaboration. A rich and well-preserved planktic foraminifera were recovered from the Chuangde Formation of the Tianbadong section and the Globotruncanita elevata, Globotruncana ventricosa, Radotruncana calcarata, Globotruncanella havanensis, Globotruncana aegyptiaca, Gansserina gansseri and Abathomphalus mayaroensis zones have been recognized. The planktic foraminiferal assemblage points to an early Campanian to Maastrichitian age for the CORBs of the eastern North Tethyan Himalayan sub-belt, which also provides a better understanding of the shifting progress of the Indian Plate to the north and the evolution of the Neotethyan ocean. The lithostratigraphy of the Chuangde Formation of the Tianbadong section comprises two lithological sequences observed in ascending succession: a lower unit (the Shale Member) mainly composed of purple (cherry-red, violet-red) shales with interbedded siltstones and siliceous rocks; and an upper unit (the Limestone Member) of variegated limestones. The strata of the Chuangde Formation in the Tianbadong section are similar to CORBs in other parts of the northern Tethyan Himalaya area of Asia (Gyangze, Sa’gya, Sangdanlin, northern Zanskar, etc.). The fossil contents of the Chuangde Formation in the sections (CORBs) studied provide a means of correlation with the zonation schemes for those of the northern Tethyan Himalayan sub-belt and the Upper Cretaceous of the southern Tethyan Himalayan sub-belt. Paleogeographic reconstruction for the Late Cretaceous indicates that the Upper Cretaceous Chuangde Formation (CORBs) and correlatable strata in northern Zanskar were representative of slope to basinal deposits, which were situated in the northern Tethyan Belt. Correlatable Cretaceous strata in Spiti and Gamba situated in the southern Tethyan Belt in contrast were deposited in shelf environments along the Tethyan Himalayan passive margin. CORBs are most likely formed by the oxidation of Fe(II)-enriched, anoxic deep ocean water near the chemocline that separated the oxic oceanic surface from the anoxic.  相似文献   

4.
北大西洋ODP171B航次1049C孔Aptian-Albian期沉积以出现大洋红层与灰色、白色沉积物高频旋回为特征。为了探讨大洋红层的成因,本文进行了矿物学、地球化学、沉积学等方面的研究。漫反射光谱、磁化率和活性铁数据表明,赤铁矿、针铁矿的出现是导致样品由白色向红色转变的矿物学原因。棕色和橙色样品中出现赤铁矿和针铁矿的特征峰,FeR/FeT平均值分别为0.23和0.24,明显区别于其他颜色的样品。磁化率与红层成良好的正相关关系,说明铁氧化物矿物含量的变化是导致磁化率变化的原因。X射线衍射结果表明,不论颜色如何,样品中均含伊利石、高岭石、蒙脱石、绿泥石等粘土矿物,其分布与样品颜色没有直接关系,很可能反映当时物源区气候稳定。ODP1049C孔岩芯沉积物出现橙色、棕色、白色、灰色等颜色的高频变化,颜色过渡接触界线清晰,说明导致红色变化的赤铁矿和针铁矿是沉积期低温氧化的产物。棕色样品中CaCO3含量最低,推测红层所对应的氧化条件是由于较低的有机质堆积速率造成的。  相似文献   

5.
福建白垩系沙县组地层磁学特征及其环境意义   总被引:2,自引:1,他引:1  
广泛分布于中国南方的白垩系巨厚地层被认为是河湖相沉积,蕴含着丰富的古气候古环境变化的信息。白垩纪是典型的温室时期,其气候特征可以为当代和未来温室气候研究提供重要借鉴。对位于中国东南的福建省三明市沙县和永安地区的白垩系沙县组典型地层进行了系统的环境磁学参数测量,结合漫反射光谱(DRS)和色度指标,探讨了该地层磁学特征及其环境指示意义和红色的成因。结果表明:1)红色调和黄色调地层的主要磁性矿物分别为赤铁矿和针铁矿,均含有顺磁性矿物和极少量的亚铁磁性矿物;2)相对于粗粒的砂岩,细粒的粉砂岩赤铁矿含量较高;3)红色赤铁矿与黄色针铁矿均形成于成岩阶段之前,具体形成阶段与形成原因需要具体分析;4)红色调地层的赤铁矿指示高温的气候环境;黄色调地层的针铁矿指示局部的湿润环境。磁学参数变化的具体环境指示意义需要进一步研究。  相似文献   

6.
本文首先详细研究了含Mn2 和Fe3 的致色矿物菱锰矿、鲕状赤铁矿、云母赤铁矿和镜铁矿的可见光吸收光谱及其一阶导数谱,鲕状赤铁矿、云母赤铁矿和镜铁矿的可见光吸收一阶导数谱的红光区的吸收谷的位置的变化表明随赤铁矿结晶度的降低,吸收谷由586.4nm移至577.4nm,而菱锰矿展示出了Mn2 的因电子跃迁产生的四个典型吸收及其一阶导数谱上577nm的吸收谷的强度比赤铁矿相应谷的强度低一个数量级,表明其电子跃迁的致色机理与赤铁矿的染色机理完全不同。依据赤铁矿的结晶度和鲕状赤铁矿与大洋红层中赤铁矿的沉积成因相似的原则遴选出鲕状赤铁矿为含Fe3 致色矿物,依据菱锰矿是和方解石具有相似结构且为红色的原则选取菱锰矿为含锰致色矿物,并佐以化学纯氧化镁为基体配制了一系列的含菱锰矿、鲕状赤铁矿和菱锰矿及鲕状赤铁矿的两相或三相混合物。详细研究了三类混合物的可见光吸收光谱的一阶导数谱,发现含菱锰矿和含鲕状赤铁矿在573nm附近均存在一吸收谷,鲕状赤铁矿的重量分数低至0.05%时仍可见一明显吸收谷且该吸收谷移至565nm附近,菱锰矿在低至0.50%时也可见这一吸收且在低至0.11%时仍可显示出菱锰矿的信息,其575nm的吸收峰未见偏移;混合物可见光一阶导数吸收谱上鲕状赤铁矿的575nm附近的吸收谷的强度随鲕状赤铁矿的重量分数的升高而增强,而所有的配制混合物中该吸收谷的位置低于577.4nm的事实也表明为使致色矿物和氧化镁混合均匀的研磨降低了赤铁矿的结晶度。本研究表明Mn2 的电子跃迁激发和细小、结晶差的赤铁矿的染色共同造就了意大利白垩纪远洋红色灰岩的红色。  相似文献   

7.
洛川黄土-红粘土序列铁氧化物组成及其古气候指示   总被引:2,自引:0,他引:2  
对洛川黄土、古土壤和红粘土中磁性矿物组成、成因和相关系进行了研究。结果表明:黄土磁性矿物以风尘磁铁矿为主,少量的成土赤铁矿和成土磁赤铁矿;古土壤磁性矿物以成土磁赤铁矿为主,成土赤铁矿次之,少量的风尘磁铁矿和赤铁矿;红粘土磁性矿物以成土赤铁矿为主,风尘磁铁矿和成土磁赤铁矿次之,少量风尘赤铁矿。黄土、古土壤和红粘土磁性矿物组成差异,反映了其形成期不同的古气候特性以及不同气候条件下生物地球化学作用强度的差异。干冷的冰期,黄土弱成土作用形成了以粗颗粒的风尘磁铁矿核 赤铁矿边的磁化率载体。间冰期的温暖湿润的古气候最有利于生物活动,强烈生物活动导致古土壤中大量纳米超细磁赤铁矿/磁铁矿产生,形成以磁赤铁矿为主,风尘磁铁矿核 赤铁矿边为辅的磁化率载体。红粘土成壤期,强降雨强蒸发的长干短湿的高温炎热的古气候使得红粘土化学风化强烈,生物地球化学活动较弱,形成以磁铁矿核 赤铁矿边和磁赤铁矿核 赤铁矿边的磁化率载体。黄土、古土壤和红粘土磁性矿物组成、磁性矿物相关系是其形成期独特的古气候指示。  相似文献   

8.
红层是古地磁学的重要研究对象之一。以往对河湖相红层的古地磁研究较多,而对于风成红层的研究较少。因 此,对于风成红层剩磁记录是否可靠等基本问题仍然缺乏清晰的认识。文章对江西信江盆地上白垩统圭峰群塘边组风成 红层和河口组河流相红层开展了古地磁研究,并通过对比风成红层与河流相红层的古地磁结果,探究风成红层剩磁记录 的可靠性及不同沉积过程对古地磁记录的影响。逐步热退磁实验结果显示仅有19% 的塘边组风成红层分离出稳定的特征 剩磁,而且其强度衰减曲线为凸形,表明特征剩磁为碎屑赤铁矿携带的原生剩磁。其平均方向为Ds=15.6 °, Is=28.9 °, n= 25, κ=13.0, α95=8.3 °;对应的古地磁极为Latitude=70.7 °, Longitude=245.6 °, A95=6.8 °。该古地磁极与赣州地区河湖相红层 的古地磁极及华南晚白垩世的古地磁极位置一致,表明风成红层的剩磁记录是可靠的。河口组河流相红层绝大部分样品 未能分离出稳定的特征剩磁。磁化率各向异性结果显示塘边组和河口组为沉积组构。岩石磁学结果表明,载磁矿物为赤 铁矿和磁铁矿。通过对塘边组风成红层的薄片观察和红度值比较等进一步研究表明,颗粒粒度和胶结程度可能对红层剩 磁记录的稳定性有一定影响。  相似文献   

9.
红层是古地磁学的重要研究对象之一。以往对河湖相红层的古地磁研究较多,而对于风成红层的研究较少。因 此,对于风成红层剩磁记录是否可靠等基本问题仍然缺乏清晰的认识。文章对江西信江盆地上白垩统圭峰群塘边组风成 红层和河口组河流相红层开展了古地磁研究,并通过对比风成红层与河流相红层的古地磁结果,探究风成红层剩磁记录 的可靠性及不同沉积过程对古地磁记录的影响。逐步热退磁实验结果显示仅有19% 的塘边组风成红层分离出稳定的特征 剩磁,而且其强度衰减曲线为凸形,表明特征剩磁为碎屑赤铁矿携带的原生剩磁。其平均方向为Ds=15.6 °, Is=28.9 °, n= 25, κ=13.0, α95=8.3 °;对应的古地磁极为Latitude=70.7 °, Longitude=245.6 °, A95=6.8 °。该古地磁极与赣州地区河湖相红层 的古地磁极及华南晚白垩世的古地磁极位置一致,表明风成红层的剩磁记录是可靠的。河口组河流相红层绝大部分样品 未能分离出稳定的特征剩磁。磁化率各向异性结果显示塘边组和河口组为沉积组构。岩石磁学结果表明,载磁矿物为赤 铁矿和磁铁矿。通过对塘边组风成红层的薄片观察和红度值比较等进一步研究表明,颗粒粒度和胶结程度可能对红层剩 磁记录的稳定性有一定影响。  相似文献   

10.
The Wiluna West small (~ 130 Mt) high-grade bedded hematite ore deposits, consisting of anhedral hematite mesobands interbedded with porous layers of acicular hematite, show similar textural and mineralogical properties to the premium high-grade low-phosphorous direct-shipping ore from Pilbara sites such as Mt Tom Price, Mt Whaleback, etc., in the Hamersley Province and Goldsworthy, Shay Gap and Yarrie on the northern margin of the Pilbara craton. Both margins of the Pilbara Craton and the northern margin of the Yilgarn craton were subjected to sub-aerial erosion in the Paleoproterozoic era followed by marine transgressions but unlike the Hamersley Basin, the JFGB was covered by comparatively thin epeirogenic sediments and not subjected to Proterozoic deformation or burial metamorphism. The Joyner's Find greenstone belt (JFGB) in the Yilgarn region of Western Australia was exhumed by middle to late Cenozoic erosion of a cover of unmetamorphosed and relatively undeformed Paleoproterozoic epeirogenic sedimentary rocks that preserved the JFGB unaltered for nearly 2 Ga; thus providing a unique snapshot of the early Proterozoic environment.Acicular hematite, pseudomorphous after acicular iron silicate, is only found in iron ore and BIF that was exposed to subaerial deep-weathering in early Paleoproterozoic times (pre 2.2 Ga) and in the overlying unconformable Paleoproterozoic conglomerate derived from these rocks and is absent from unweathered rocks (Lascelles, 2002). High-grade ore and BIF weathered during later subaerial erosion cycles contain anhedral hematite and acicular pseudomorphous goethite. The acicular hematite was formed from goethite pseudomorphs of silicate minerals by dehydration in the vadose zone under extreme aridity during early Paleoproterozoic subaerial weathering.The principal high-grade hematite deposits at Wiluna West are interpreted as bedded ore bodies that formed from BIF by loss of chert bands during diagenesis and have been locally enriched to massive hematite by the introduction of hydrothermal specular hematite. No trace of chert bands are present in the deep saprolitic hematite and hematite–goethite ore in direct contrast to shallow supergene ore in which the trace of chert bands is clearly defined by goethite replacement, voids and detrital fill. Abundant hydrothermal microplaty hematite at Wiluna West is readily distinguished by its crystallinity.The genesis of the premium ore from the Pilbara Region has been much discussed in the literature and the discovery at Wiluna West provides a unique opportunity to compare the features that are common to both districts and to test genetic models.  相似文献   

11.
Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. Detailed studies of CORBs are rare; therefore, we compiled CORBs data from deep sea ocean drilling cores and outcrops of Cretaceous rocks subaerially exposed in southern Europe, northwestern Germany, Asia and New Zealand. In the Tethyan realm, CORBs mainly consist of reddish or pink shales, limestones and marlstones. By contrast, marlstones and chalks are rare in deep-ocean drilling cores. Upper Cretaceous marine sediments in cores from the Atlantic Ocean are predominantly various shades of brown, reddish brown, yellowish brown and pale brown in color. A few red, pink, yellow and orange Cretaceous sediments are also present. The commonest age of CORBs is early Campanian to Maastrichtian, with the onset mostly of oxic deposition often after Oceanic Anoxic Events (OAEs), during the early Aptian, late Albian-early Turonian and Campanian. This suggests an indicated and previously not recognized relationship between OAEs, black shales deposition and CORBs. CORBs even though globally distributed, are most common in the North Atlantic and Tethyan realms, in low to mid latitudes of the northern hemisphere; in the South Atlantic and Indian Ocean in the mid to high latitudes of the southern hemisphere; and are less frequent in the central Pacific Ocean. Their widespread occurrence during the late Cretaceous might have been the result of establishing a connection for deep oceanic current circulation between the Pacific and the evolving connection between South and North Atlantic and changes in oceanic basins ventilation.  相似文献   

12.
The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial records of reactive phosphorus in the black shale of the Gyabula Formation and oceanic red beds of the Chuangde Formation, Southern Tibet. Results indicate that the principal reactive phosphorus species is the authigenic and carbonate-associated phosphorus (CaP) in the Gyabula Formation and iron oxides-associated phosphorus (FeP) in the Chuangde Formation which accounts for more than half of their own total phosphorus content. While the authigenic and carbonate-associated phosphorus (CaP) is almost equal in the two Formations; the iron oxides-associated phosphorus is about 1.6 times higher in the Chuangde Formation than that in the Gyabula Formation resulting in a higher content of the total phosphorus in the Chuangde Formation. According to the observations on the marine phosphorus cycle in Modern Ocean, it is found that preferential burial and regeneration of reactive phosphorus corresponds to highly oxic and reducing conditions, respectively, leading to the different distribution of phosphorus in these two distinct type of marine sediments. It is the redox-sensitive behavior of phosphorus cycle to the different redox conditions in the ocean and the controlling effects of phosphorus to the marine production that stimulate the local sedimentary transition from the Cretaceous black shale to the oceanic red beds.  相似文献   

13.
藏南白垩系黑-红层沉积岩有机质组成分布特征   总被引:1,自引:0,他引:1  
对藏南江孜县床得剖面白垩系黑层和红层沉积岩进行的有机地球化学研究表明,黑层有机碳含量高于红层5~10倍,红层和黑层饱和烃主峰碳数分别为nC25和nC23;黑层和红层沉积有机质的母质来源都以水生植物和菌藻类等低等生物为主,陆源有机质的输入非常有限;但饱和烃的分布和主峰碳数的差异可能反映了有机母源物质在种群方面的差异,而这种差异可能主要是水体温度存在差异造成的,即红层发育时期水体温度可能高于黑层沉积时期.而在高温度条件下,水生生物和陆生植物的生长发育受到限制,造成原始有机质产率和有机质沉积保存量低可能是红层沉积岩形成的主要原因.  相似文献   

14.
We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24?Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of ≈0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14?Å with Fe/(Fe+Mg) ratios of ≈0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensite/chlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in δ18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300°?C±30° for chlorite-quartz at 32?m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10–11°/m in the vent region.  相似文献   

15.
The black shale-hosted selenide vein-type deposit at Tilkerode, eastern Harz, Germany, has specular hematite enclosed in clausthalite (PbSe). The specular hematite has Ti and V in amounts of up to ~1 wt.% TiO2 and ~3 wt.% V2O5, and subordinate, but important, contents of Mo (22–372 ppm) and B (up to 68 ppm). The Tilkerode hematite serves as a reference for hydrothermal hematite formed at relatively low temperatures (<150 °C). The composition of the Tilkerode hematite is compared with that of two generations of specular hematite from itabirite-hosted iron-ore deposits in the Quadrilátero Ferrífero of Minas Gerais, Brazil. The first generation of specular hematite represents an early tectonic hematitisation of dolomitic itabirite at Águas Claras and occurs as fine-grained crystals. Reconnaissance data indicate that the Águas Claras hematite is poorer in Ti and V, relative to the Tilkerode hematite, but has ~5–10 ppm B and ~7–11 ppm Li. The second generation of specular hematite defines the pervasive tectonic foliation of the Gongo Soco iron ore. This hematite has Ti contents of up to ~2 wt.% TiO2 and subordinate amounts of V (62–367 ppm); its B and Li concentrations are mostly below <2 ppm B and <1 ppm Li. The presence of Ti and B in the Tilkerode hematite can be explained by highly saline, B-bearing fluids that were capable of mobilising otherwise immobile Ti. The Mo signature of the Tilkerode hematite suggests that Mo was derived from the host black shale. In Minas Gerais, B and Li were incorporated into the early tectonic hematite from saline fluids at relatively low temperatures (Águas Claras) and then released during metamorphic hematite growth at higher temperatures, as suggested by the foliation-defining hematite without B–Li signature (Gongo Soco).  相似文献   

16.
西藏南部晚白垩世-古新世大洋红层的分布与时代   总被引:11,自引:2,他引:9  
特提斯—喜马拉雅北沉积亚带沉积有一套大洋红色岩层,由东往西在羊卓雍错、江孜、萨迦、萨嘎、札达一带断续出露,并与宗卓组上部地层相关。这套海相红层,根据岩性特征和浮游有孔虫可以直接进行区域对比。其时代在江孜地区为Santonian晚期—Campanian中期,包括Dicarinella asymetrica, Globotruncanitaelevata,Globotruncana ventricosa 和Globotruncanita calcarata 浮游有孔虫带;在萨迦地区限于Campanian期,鉴定有Globotruncanita elevata, Globotruncana ventricosa 和G. linneiana等具时代意义的浮游有孔虫;在萨嘎—吉隆地区为Maastrichtian期,识别出Gansserina gansseri 和Abthomphalus mayaroensis 浮游有孔虫带;在札达地区为古新世早期,以Glibigerina eugubina G. fringa化石带为代表。海相红层在西藏南部由东往西其时代逐渐变新,主要沉积时代分布在Santonian晚期—古新世早期。其总体时间跨度较大,大约长达20Ma。而事件在各个地点的延续时间有限,基本在3~8 Ma之内。根据对海相红层和沉积基质中浮游有孔虫的研究,该沉积带宗卓组的顶界时代已超出白垩纪,进入了古新世。  相似文献   

17.
安徽巢湖凤凰山晚石炭世黄龙组的地层主体为肉红色生物屑微晶灰岩,顶部为夹灰岩条带的泥岩。矿物学分析显 示,肉红色生物屑微晶灰岩的矿物主要为方解石,含少量针铁矿和赤铁矿。漫反射光谱分析表明,常用的古气候指标“红 度”与灰岩中铁氧化物、氢氧化物的光谱强度具显著的正相关性,而与岩石的全铁含量相关性较低,据此推测铁的氧化物 和氢氧化物是灰岩呈肉红色的重要原因。元素地球化学分析结果显示,黄龙组灰岩相对富Fe,Mn,而贫Co,Ni,在 Al-Fe-Mn,Fe-Mn-(Cu+Co+Ni)以及Cu-Pb-Zn三角判别图上,均靠近或落入热液成因区。综合地球化学特征与前人研究成 果,该文认为巢湖凤凰山黄龙组肉红色灰岩的形成很可能受到海底热液活动的影响。  相似文献   

18.
藏南江孜县床得剖面侏罗-白垩纪地层层序及地层划分   总被引:17,自引:0,他引:17  
重测西藏南部江孜床得剖面后发现地层层序与前人认识完全相反,不只含上白垩统,还包括中—上侏罗统和整个白垩系;重新厘定了宗卓组、加不拉组,新建床得组,它们分属晚坎潘期—马斯特里赫特期、贝里阿斯期—三冬期和早—中坎潘期;由下向上可识别出6套沉积组合:安山岩层、黄层、黑层、白层、红层及滑塌层,大致对应于下热组(J2x )、维美组(J3w )、加不拉组(K(1- 2)j,床得浦段+ 机布里段)、床得组(K2c)、宗卓组(K2zn)  相似文献   

19.
The marine Cretaceous-Paleogene boundary (KPB) section at Højerup-Fish Clay consists of a very thin red smectite-rich carbonate-poor (“impact”) layer overlain by a thick black marl. Similar red layers are found in the KPB sections at Agost in Spain and El Kef in Tunisia.Smectite of the red layer of the KPB section at Højerup is probably detrital and redeposited from adjacent coastal or marine areas. This clay mineral is likely mixed with a small amount of smectite derived from impact glasses. Most of the microspherules and nano-size glasses of the red layer at Højerup are probably detrital and simultaneously redeposited with smectite. The deposition of the red layer occurred for several decades to a century at most.  相似文献   

20.
The Ringerike Group is a meandering fluviatile succession which is about 60% red. Most of the red zones are formed of mudrocks and siltstones and correspond to the fine members of fining-upwards cyclothems. The majority of coarse members are drab coloured.Textural studies of thin and polished sections show that the red colour is caused by finely crystalline hematite as matrix and grain-coatings. This hematite apparently crystallized post-depositionally. Hematite also occurs in other textural sites: within altered phyllosilicates, as detrital grains and as totally pseudomorphed phyllosilicates. This, and the lack of consistency between colour and clay mineralogy, suggests that the red beds have had a long and complex diagenetic history.Iron analyses indicate that the red beds are enriched in Fe3+ and total iron (FeO) by about 1%. This is thought to have been derived from the pre-depositional weathering of iron minerals and introduced into the sediments as amorphous iron hydroxide or iron-bearing clays. Crystallization of iron hydroxide under oxidizing conditions and the post-depositional alteration of iron-silicates and oxides is thought to be responsible for the formation of the red beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号