首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OCCAM global ocean model results were applied to calculate the monthly water transport through 7 straits around the East China Sea(ECS)and the South china Sea(SCS).Analysis of the features of velocity profiles and their variations in the Togara Strait,Luzon Strait and Eastern Taiwan Strait showed that;1)the velocity profiles had striped pattern in the Eastern Taiwan Strait,where monthly flux varied from 22.4 to 28.1 Sv and annual mean was about 25.8 Sv;2)the profiles of velocity in the Togara Strait were characterized by core structure,and monthly flux varied from 23.3 to 31.4 Sv,with annual mean of about 27.9 Sv;3)water flowed from the SCS to the ECS in the Taiwan Strait,with maximum flux of 3.1 Sv in July and minimum of 0.9 Sv in November;4)the flux in the Tsushima Strait varied by only about 0.4 Sv by season and its annual mean was about 2.3 Sv;5)Kuroshio water flowed into the SCS in the Luzon Strait throughout the year and the velocity profiles were characterized by multi-core structure.The flux in the Luzon Strait was minimun in June(about 2.4 Sv)and maximum in February(about 9.0 Sv),and its annual mean was 4.8 Sv;6)the monthly flux in the Mindoro Strait was maximum in December(3.0 Sv)and minimum in June(Only 0.1 Sv),and its annual mean was 1.3 Sv;7)Karimata Strait water flowed into the SCS from May to August,with maximum in-flow flux of about 0.75 Sv in June and flowed out from September to April at maximum outflow flux of 3.9 Sv in January.The annual mean flux was about 1.35 Sv.  相似文献   

2.
Characteristics of water exchange in the Luzon Strait during September 2006   总被引:7,自引:1,他引:6  
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of t...  相似文献   

3.
We deployed two ADCP mooring systems west of the Luzon Strait in August 2008, and measured the upper ocean currents at high frequency. Two typhoons passed over the moorings during approximately one-month observation period. Using ADCP observations, satellite wind and heat flux measurements, and high-resolution model assimilation products, we studied the response of the upper ocean to typhoons. The first typhoon, Nuri, passed over one of the moorings, resulting in strong Ekman divergence and significant surface cooling. The cooling of surface water lagged the typhoon wind forcing about one day and lasted about five days. The second typhoon, Sinlaku, moved northward east of the Luzon Strait, and did not directly impact currents near the observation regions. Sinlaku increased anomalous surface water transport exchange across the Luzon Strait, which modulated the surface layer current of the Kuroshio.  相似文献   

4.
Water transports through the four main straits around the South China Sea   总被引:2,自引:2,他引:0  
A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are −4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s−1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of −7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of −2.1 Sv in June (1.5 Sv in October, −1.0 Sv in June, −0.2 Sv in May), respectively. Supported by National Natural Science Foundation of China (No. 40806012, 40876013), Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences (No. KLOCAW0803) and Scientific Research Foundation for talent, Guangdong Ocean University (No. E06118)  相似文献   

5.
We studied the driving force of the Kuroshio intrusion into the South China Sea (SCS) during the winter monsoon, using satellite-tracked drifters entering the Luzon Strait (LS) through the Balintany and Babuyan Channels from the Philippine Sea. Most drifters passing through the Babuyan Channel in winter entered the interior SCS without a significant change in velocity. However, half of the drifters passing through the Balintany Channel entered the SCS at ~30 cm/s, which was faster than when they entered the LS. The other half continued moving northwestward into the Kuroshio and returned to the North Pacific. Quantitative analyses, using surface climatological wind and sea surface height anomaly (SSHa) data explained both the difference in velocity of drifters between the two channels and their acceleration through the Balintany Channel. The results suggest that the positive meridional gradient of sea surface height in the Luzon Strait, caused by the pileup of seawater driven by the Northeast monsoon, as well as Ekman flow, contribute to the Kuroshio intrusion into the SCS through the Babuyan and Balintany Channels. The former may be the main driving force.  相似文献   

6.
Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009,we studied the circulation structure in the Luzon Strait area,examined the routes of water exchange between the South China Sea(SCS) and the Philippine Sea,and estimated the volume transport through Luzon Strait.We found that the Kuroshio axis follows a e-shaped path slightly east of 121uE in the upper layer.With an increase in depth,the Kuroshio axis became gradually farther from the island of Luzon.To study the water exchange between the Philippine Sea and the SCS,identification of inflows and outflows is necessary.We first identified which flows contributed to the water exchange through Luzon Strait,which differs from the approach taken in previous studies.We determined that the obvious water exchange is in the section of 121°E.The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume,and mainly in the 100±500 m layer at 19.5°±20°N(accounting for 4.40 Sv),while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°±20°N and upper 400 m at 21°±21.5°N,and below 240 m at 19°±19.5°N,accounting for 1.07,3.02 and 3.43 Sv in volume transport,respectively.  相似文献   

7.
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI), the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50–75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the northern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Niño event.  相似文献   

8.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

9.
By combining Argos drifter buoys and TOPEX/POSEIDON altimeter data, the time series of sea-surface velocity fields in the Kuroshio Current (KC) and adjacent regions are established. And the variability of the KC from the Luzon Strait to the Tokara Strait is studied based on the velocity fields. The results show that the dominant variability period varies in different segments of the KC: The primary period near the Luzon Strait and to the east of Taiwan Island is the intra-seasonal time scale; the KC on the continental shelf of the ECS is the steadiest segment without obvious periodicity, while the Tokara Strait shows the period of seasonal variability. The diverse periods are caused by the Rossby waves propagating from the interior ocean, with adjustments in topography of island chain and local wind stress. Supported by the National Basic Research Program of China (973 Program, Nos. 2007CB411804, 2005CB422303), the NSFC (No. 40706006), the Key Project of International Science and Technology Cooperation Program of China (No. 2006DFB21250) and the “111 Project” (B07036), the Program for New Century Excellent Talents in University (NECT-07-0781)  相似文献   

10.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas,vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves areapproximated by a set of two-time-level semi-implicit finite difference equations. The major terms in-cluding the local acceleration, sea-surface slope, Coriolis force and the bottom friction are approxi-mated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are app-roximated with the Leith scheme. The difference equations are split into two sets of alternating directionimplicit quations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, andone west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coastof Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summerand winter monso  相似文献   

11.
To discuss the intrusion of the Kuroshio into the SCS, we examined the mixing between the North Pacific and South China Sea (SCS) waters based on in-situ CTD data collected in August and September 2008 and the moored ADCP data taken from mid September 2008 to early July 2009. The CTD survey included four meridional sections from 119°E to 122°E around the Luzon Strait, during which pressure, temperature, and salinity were measured. The CTD data show that the isopycnal surface tilted from the SCS to the North Pacific; and it was steeper in the lower layers than in the upper ones. Meanwhile, we found strong vertical mixing taken place in the areas near 121°E. The Kuroshio in high temperature and salinity intruded westward through Luzon Strait. The frequency of buoyancy was one order of magnitude greater than that of the common ones in the ocean, suggesting stronger stratification in the northeastern SCS. On the other hand, the long-term ADCP data show that before late October 2008, the direction of water flow in the SCS was eastward, and from November 2008 to late February 2009, it turned northwestward in the layers shallower than 150 m, while remained unchanged in deep layers from 200 to 450 m. From March to June 2009, the direction shifted with increasing depth from northward to southward, akin to the Ekman spiral. EOF analysis of the current time series revealed dominant empirical modes: the first mode corresponded to the mean current and showed that the Kuroshio intrusion occurred in the upper layers only from late December to early March. The temporal coefficient of the first and the second mode indicated clearly a dominant signal in a quasi-seasonal cycle.  相似文献   

12.
In this numerical model for simulating the Kuroshio intrusion into the East and South China Seas, vertically averaged marine hydrodynamic equations governing ocean currents and long-period waves are approximated by a set of two-time-level semi-implicit fimite difference equations. The major terms including the local acoeleration, sea-surface slope, Coriolis force and the bottom friction are approximated with the Crank-Nicholson scheme, which is of second order accuracy. The advection terms are approximated with the Leith scheme. The difference equations are split into two sets of alternating direction implicit equations, each of which has a tridiagonal matrix and can be easily solved. The model reproduces a major Kuroshio intrusion north of Luzon Island, one north of Taiwan Island, and one west of the Tokara Strait. The model shows a current system running from the Luzon Strait to the coast of Vietnam and Hainan Island, through the Taiwan Strait and then into the Tsushima Strait. The summer and winter monsoons generate several eddies in the South China Sea. Project supported by the National Natural Science Foundation of China.  相似文献   

13.
A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that westward and eastward flowes occur in the Luzon Strait in the same period in a year. How ever thenet volume transport is westward. In the upper level (0m -- -500m), the westward flow exits in the middle and south of the Luzon Strait, and the eastward flow exits in the north. There are two centers of westward flow and one center of eastward flow. In the middle of the Luzon Strait, westward and eastward flowes appear alternately in vertical direction. The westward flow strengthens in winter and weakens in summer. The net volume transport is strong in winter (5.53 Sv) but weak in summer (0.29 Sv). Except in summer, the volume transport in the upper level accounts for more than half of the total volume transport (0m -- bottom). In summer, the net volum etransport in the upper level is eastward (1.01 Sv), but westward underneath.  相似文献   

14.
Based on the 18-year(1993–2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature(SST) and simple ocean data assimilation datasets,this study investigated the patterns of the SST anomalies(SSTAs) that occurred in the South China Sea(SCS) during the mature phase of the El Ni?o/Southern Oscillation.The most dominant characteristic was that of the outof-phase variation between southwestern and northeastern parts of the SCS,which was influenced primarily by the net surface heat flux and by horizontal thermal advection.The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during El Ni?o episodes.Conversely,it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during El Ni?o episodes led to the development of the positive SSTA in the southwestern SCS.  相似文献   

15.
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar (HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity (PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity (MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.  相似文献   

16.
In this work, Princeton Ocean Model (POM) was used to study the formation of the South China Sea Warm Current (SCSWC) in the barotropic case. Monthly averaged wind stress and the inflow/outflow transports in January were used in the numerical simulation which reproduced the SCSWC. The effects of wind stress and inflow/outflow were studied separately. Numerical experiments showed thatthe Kuroshio intrusion through the Luzon Strait and the slope shelf in the northern SCS are necessary conditions for the founation of the SCSWC. In a flat bottom topography experiment, the wind stress drivennortheast current in the northern SCS is a compensatory current.  相似文献   

17.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

18.
After the winter and summer current structures on two or three latitudinal sections in Taiwan Strait were obtained from the measured current data, the seawater fluxs through the sections were calculated. In summer, the currents in the central and northern part of Taiwan Strait normally flow northward at a net flux of 3.32×106m3/s. In winter, the high temperature and salinity Kuroshio and South China Sea water enter Taiwan Strait from the southem section at 1.69×106m3/s and 0.59×106 m3/s respectively, while the East China Sea water enters Taiwan Strait from the northern section at 1.02×106m3/s. About 0.40×106 m3/s of the seawater enters the South China Sea along the coast of Fujian and Guangdong; the other 0.62×106 m3/s of the seawater is mixed with the Kuroshio water and the South China Sea water in the northern sea areas. The net northward flux is 1.74×106m3/s in winter.  相似文献   

19.
Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.  相似文献   

20.
Pathways of mesoscale variability in the South China Sea   总被引:5,自引:0,他引:5  
The propagation of oceanic mesoscale signals in the South China Sea (SCS) is mapped from satellite altimetric observations and an eddy-resolving global ocean model by using the maximum cross-correlation (MCC) method. Significant mesoscale signals propagate along two major bands of high variability. The northern band is located west of the Luzon Strait, characterized by southwestward eddy propagation. Although eddies are the most active in winter, their southwestward migrations, steered by bathymetry, occur throughout the year. Advection by the mean flow plays a secondary role in modulating the propagating speed. The southern eddy band lies in the southwest part of the SCS deep basin and is oriented in an approximately meridional direction. Mesoscale variability propagates southward along the band in autumn. This southward eddy pathway could not be explained by mean flow advection and is likely related to eddy detachments from the western boundary current due to nonlinear effects. Our mapping of eddy propagation velocities provides important information for further understanding eddy dynamics in the SCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号