首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report laboratory simulations of asteroid observations obtained using a specially designed apparatus SAM (the acronym stands for System for Asteroid Models).The aim of the experiment was to assess the geometrical and physical characteristics of an asteroidal body which may affect the shape of its light curve; and, in particular, the parameters which define asteroid orientation with respect to the observer, and the shape and surface morphology of the asteroids.The design and operation of the SAM is described in some detail and the first results obtained with models having a regular shape are presented and discussed.Istituto di Astrofisica Spaziale del CNR  相似文献   

2.
The shape and characteristics (beginning and end heights, and height of maximum brightness) of meteor light curves are investigated under the constraint that the surface area S that a meteoroid presents to the oncoming air flow varies as a power law in the meteoroid mass m such that   S ∼ m α  . We investigate the meteoroid ablation for a range of values of α, and find that the  α= 1  condition allows for a fully analytic solution to the coupled differential equations of meteoroid ablation when the density profile is that of an isothermal atmosphere. The possible geometrical properties of Geminid meteoroids are discussed in terms of the  α= 1  ablation model and it is shown that they are consistent with being derived from an asteroidal, rather than cometary, parent body.  相似文献   

3.
Abstract— Absolute and relative cratering rates on the terrestrial planets have been calculated using the same asteroidal collision model and Monte Carlo program used for previous studies of the terrestrial meteorite flux, the steady-state number of Apollo-Amor objects, and the orbital distribution of both meteorites and Apollo-Amor objects. The most straightforward result is that projectiles from the asteroid belt appear to provide about one-third the observed present-day production of terrestrial craters larger than 10 km in diameter. When uncertainties in the calculations and observations are included, it cannot be excluded that the entire terrestrial cratering flux is asteroidal. On the other hand, assumption of an additional Apollo-Amor source of extinct comets, in the same quantity permitted by Apollo-Amor observations, provides better agreement with the observed cratering rate. In addition, a significant (e.g., ~30%) terrestrial contribution from active long and short period comets is acceptable within the uncertainties of the assumptions required. The ratios of the cratering rates on the different terrestrial planets are somewhat sensitive to the assumed source. A purely asteroidal source predicts a martian cratering rate per unit area about four times that on Earth, whereas the difference is reduced to about a factor of two for the mixed asteroid-extinct comet source. The opposite effect is found for Mercury. As discussed by previous authors, the predicted lunar cratering rate is significantly higher than that observed. It is not clear whether this is a result of scaling to impacts on a body considerably smaller than Earth, or if it indicates an increase in the cratering flux during the Phanerozoic.  相似文献   

4.
Charles F. Yoder 《Icarus》1979,40(3):341-344
The dynamic plausibility of various ideas on the origin of the Trojans is briefly discussed. We take the point of view that the present, tightly bound population has secularly evolved through some mechanism from less to more tightly bound orbit configurations. The mechanisms considered are changes in the Jovian mass or semimajor axis during planetary formation, collisional interactions with external, asteroidal material, and cometary outgassing.  相似文献   

5.
The dynamics of the 2/1 mean-motion asteroidal resonance with Jupiter is studied by numerical integration of the equations of motion of the Sun-Jupiter-Saturn-asteroid system. The measurement of the fundamental asteroidal frequencies by means of Fourier and wavelet analyses allows us to construct the web of the secular, secondary and Kozai resonances inside the 2/1-resonance boundaries. The structure of the phase space of the 2/1 resonance is discussed with emphasis on the acting depletion mechanisms due to presence of these inner resonances. Special attention is paid to the study of the middle-eccentricity depleted region. The importance of the great inequality of the Jupiter-Saturn system in the acceleration of the diffusion processes in this region is pointed out. The existence of a group of asteroids like (3789) Zhongguo, inside the 2/1 resonance, is also discussed.  相似文献   

6.
T.A. Heppenheimer 《Icarus》1975,26(3):367-376
This paper examines two proposed mechanisms whereby asteroidal collisions and close approaches may have given rise to the Kirkwood Gaps. The first hypothesis is that asteroids in near-resonant orbits have markedly increased collision probabilities and so are preferentially destroyed, or suffer decay in population density, within the resonance zones. A simple order-of-magnitude analysis shows that this hypothesis is untenable since it leads to conclusions which are either unrealistic or not in accord with present understanding of asteroidal physics.The second hypothesis is the Brouwer-Jefferys theory that collisions would smooth an asteroidal distribution function, as a function of Jacobi constant, thus forming resonance gaps. This hypothesis is examined by direct numerical integration of 50 asteroid orbits near the 2:1 resonance, with collisions simulated by random variables. No tendency to form a gap was observed.  相似文献   

7.
We present the analysis and computational results for the inclination relative effect of moonlets of triple asteroidal systems. Perturbations on moonlets due to the primary’s non-sphericity gravity, the solar gravity, and moonlets’ relative gravity are discussed. The inclination vector for each moonlet follows a periodic elliptical motion; the motion period depends on the moonlet’s semi-major axis and the primary’s J2 perturbations. Perturbation on moonlets from the Solar gravity and moonlet’s relative gravity makes the motion of the x component of the inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2 to be periodic. The mean motion of x component and the y component of the inclination vector of each moonlet forms an ellipse. However, the instantaneous motion of x component and the y component of the inclination vector may be an elliptical disc due to the coupling effect of perturbation forces. Furthermore, the x component of the inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2 form a quasi-periodic motion. Numerical calculation of dynamical configurations of two triple asteroidal systems (216) Kleopatra and (153591) 2001 SN263 validates the conclusion.  相似文献   

8.
Roche figures of doubly synchronous asteroids   总被引:2,自引:0,他引:2  
The subject of equilibrium figures of rotating masses of fluid is here considered as applied to two bodies of a fully synchronized asteroidal system with its main purpose being to trace their forms, known as “Roche figures”. Many synchronous binary asteroids have been discovered in the last six years. In the present paper I will endeavor to apply theoretical results of the Roche problem to a few of these asteroidal systems. The most conspicuous trends are determined and discussed. From this it appears that these figures of equilibrium are a fair approximation to reality notwithstanding the irrelevance of the fluid hypothesis with regards to real solid bodies.  相似文献   

9.
Semi-quantitative investigation is made of hazard expected from an asteroidal impact in the Pacific. An impact ofd (diameter) = 200 m asteroid has a probability of hitting somewhere in the Pacific once in 15000 y. By carrying out a Monte Carlo simulation, such an impact, on average, is shown to create a tsunami as high as 16, 14, 15, and 21 m at Japan, Taiwan, Shanghai and Hawaii, respectively. Wooden houses, stone and brick houses, and reinforced concrete buildings are likely to be demolished by tsunamis of height 2, 7 and 20 m respectively. Thus, there is a probability of 1% or so that most of the artificial constructions on the coast lines of the Pacific be destroyed in the next century by an asteroidal impact.  相似文献   

10.
Abstract— We present data for 259 meteoric fireballs observed with the Canadian camera network, including velocities, heights, orbits, luminosities along each trail, estimates of preatmospheric masses and surviving meteorites (if any) as well as membership in meteor showers. Some 213 of the events comprise an unbiased sample of the 754 fireballs observed in a total of 1.51 × 1010 km2 h of clear-sky observations. The number of fireballs and the amount of clear sky in which they were recorded are given for each day of the year. We find at least 37% of the unbiased sample are members of some 15 recognized meteor showers. Preatmospheric masses, based on an assumed luminous efficiency of 0.04 for velocities >10 km s?1, range from 1 g for some very fast fireballs up to hundreds of kilograms for the largest events. We present plots and equations for the flux, as a function of initial mass, for the entire group of fireballs and for some subgroups: meteorite-dropping objects; meteor shower members; groups that appear to be mainly of asteroidal or cometary origin; and for very fast objects. For masses of a few kilograms, asteroidal objects outnumber cometary ones. Cometary objects attain greater peak brightness than asteroidal ones of equal mass largely due to higher velocity, but also because they fragment more severely. For 66 fireballs, we estimate the meteoroid density using photometric and dynamic masses. Presumed cometary objects have typical densities near 1.0, while asteroidal values show two groups that suggest meteoroids similar to carbonaceous and ordinary chondrites. Our basic data may be used by others for further studies or to reexamine our results using assumptions different from those employed in this paper.  相似文献   

11.
The author's aim is to achieve global regularization in the Magnetic-Binary problem by suitably transforming the state-time space of the system. The functions which perform the change of the physical time and the geometrical figures of the system, are connected by a special relation leaving the form of the equations of motion invariant. Additionally, a proposition for generalization of the process is discussed in an aspect as well, of how much such a regularization is profitable.  相似文献   

12.
Light curves have been constructed for a number of model astroids as represented by three series of triaxial ellipsoids (one almost prolate, one almost oblate and one in between). The light curves have maximumpossible amplitudes (m) ranging from 0m.1 to 1.0. The case m=0m.7 is illustrated in some detail. Quite complicated patterns of motion are shown at times to lead to simplelooking light curves for the prolate models. It is argued that models of this latter type are likely to be over-represented in any sampling of asteroidal light curves because of simple selection effects.  相似文献   

13.
The orbital evolution of asteroidal fragments with diameters ranging from 10 cm to 20 km, injected into the 3:1 Kirkwood gap at 2.50 A.U., has been investigated using Monte Carlo techniques. It is assumed that this material can become Earth-crossing on a time scale of 106 years, as a result of a chaotic zone discovered by Wisdom, associated with the 3:1 resonance. This phenomenon, as well as close encounter planetary perturbations, the v6 secular resonance, and the ablative effects of the Earth's atmosphere are included in the determination of the orbital characteristics of meteorites impacting the Earth derived by fragmentation of this asteroidal material. It is found that the predicted meteorite orbits closely match those found for observed ordinary chondrites, and the total flux is in approximate agreement with the observed fall rate of ordinary chondrites. About 10% of the predicted impacting bodies are meteorite-size bodies originating directly from the asteroid belt. The remainder are obtained by subsequent fragmentation of larger (~1 m to 20 km diameter) Earth-crossing asteroidal fragments. The largest of these fragments are observable as Apollo-Amor objects. Thus the apparent paradox between the orbital characteristics of observed ordinary chondrites and those predicted from Apollo object sources is reconciled. Both appear to be complementary aspects of the same phenomena. No other asteroidal resonance is found to be satisfactory as a source of ordinary chondrites. These meteorites are therefore most likely to be derived from S asteroids in this limited region of the asteroidal belt, the largest of which are 11 Parthenope, 17 Thetis, and 29 Amphitrite.  相似文献   

14.
(7)Formation of celestial bodies. The basic concepts of the accretional process are discussed, and the inadequacy of the contractional model is pointed out. A comparison is made between the general pre-planetary state on the one hand and the present state in the asteroidal region on the other. A model for accretion of resonance-captured grains leading to the formation of resonance-captured planets and satellites is suggested.(8)Spin and accretion. The relation between the accretional process and the spin of planets is analyzed.(9)Accretion of planets and satellites. It is shown that jet streams are a necessary intermediate stage in the formation of celestial bodies. The time sequence of planet formation is analyzed, and it is shown that the newly accreted bodies have a characteristic internal heat structure; the cases of the Earth and the Moon are considered in detail. A region of high initial temperature is found at 0.4 of the present Earth radius, whereas the culminating temperature of the Moon is near its present surface. An accretional heat wave is found to proceed outwards, and may produce the observed differentiation features.  相似文献   

15.
The simulated Doppler shifts of the solar Mg I Fraunhofer line produced by scattering on the solar light by asteroidal, cometary, and trans-neptunian dust particles are compared with the shifts obtained by Wisconsin H-Alpha Mapper (WHAM) spectrometer. The simulated spectra are based on the results of integrations of the orbital evolution of particles under the gravitational influence of planets, the Poynting-Robertson drag, radiation pressure, and solar wind drag. Our results demonstrate that the differences in the line centroid position in the solar elongation and in the line width averaged over the elongations for different sizes of particles are usually less than those for different sources of dust. The deviation of the derived spectral parameters for various sources of dust used in the model reached maximum at the elongation (measured eastward from the Sun) between 90° and 120°. For the future zodiacal light Doppler shifts measurements, it is important to pay a particular attention to observing at this elongation range. At the elongations of the fields observed by WHAM, the model-predicted Doppler shifts were close to each other for several scattering functions considered. Therefore the main conclusions of our paper do not depend on a scattering function and mass distribution of particles if they are reasonable. A comparison of the dependencies of the Doppler shifts on solar elongation and the mean width of the Mg I line modeled for different sources of dust with those obtained from the WHAM observations shows that the fraction of cometary particles in zodiacal dust is significant and can be dominant. Cometary particles originating inside Jupiter's orbit and particles originating beyond Jupiter's orbit (including trans-neptunian dust particles) can contribute to zodiacal dust about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. The fraction of asteroidal dust is estimated to be ∼0.3-0.5. The mean eccentricities of zodiacal particles located at 1-2 AU from the Sun that better fit the WHAM observations are between 0.2 and 0.5, with a more probable value of about 0.3.  相似文献   

16.
Abstract— Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (~40 μm in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.  相似文献   

17.
Conditions are presented for maintenance of asteroid magnetospheres by dipole moments and for propagation of whistler mode noise in the solar wind at asteroid distances. Surface field intensities less than one thousandth that of the Earth are found adequate for supporting magnetospheres in the quiet solar wind surrounding the larger asteroids. Magnetospheric diameters are likely to be small, however, and difficult to identify without targeted, close-approach flybys. Under most ordinary conditions, whistler noise generated in an asteroidal shock or by other interaction with the solar wind will not propagate back upstream toward the sun, but may form a detectable wake downstream. Pure standing whistler wavefronts could be a unique asteroidal phenomenon.  相似文献   

18.
The position and shape of the Gegenschein’s maximum brightness provide information on the structure of the interplanetary dust cloud. We show that the asteroidal dust bands, extended near the anti-solar point, play an important role in determining both the position of the maximum brightness and the shape of the Gegenschein. After removing the asteroidal dust bands from an observation of the Gegenschein on November 2, 1997, it was found that the maximum brightness point shifted −0.4° in ecliptic latitude, i.e., to the south of the ecliptic plane, at an ecliptic longitude of 180°, in contrast to a latitude value of +0.1° when the dust bands were included. Furthermore, the part of the Gegenschein to the south of the ecliptic plane was brighter than the northern part at the time of observation. Referring to the cloud model of T. Kelsall et al. (1998, Astrophy. J. 508, 44-73), it can be estimated that the ascending node of the symmetry plane of the dust cloud is 57°−3°+7° when its inclination is 2.03° ? 0.50°.  相似文献   

19.
A mechanism is treated for the origin of the eccentricities of the asteroids and of Mars: secular resonances associated with the dissipation of a primitive solar nebula. The nebula is modeled as a two-dimensional disk; a closed-form, convergent integral is derived to represent its disturbing function. Dissipation of this nebula gives rise to “excitation waves”, produced by the variable location of the secular resonances, which can excite the eccentricity of Mars, and scatter asteroidal eccentricities through the observed ranges. By requiring that these ranges match the observed values as a functions of semimajor axis, one infers: (a) the primordial eccentricities of Jupiter and Saturn initially had amplitudes different from present-day values, but these amplitudes approached the present values toward the end of nebular dissipation; (b) the nebular dissipation time scale may have been of the order of (few) × 104 years as the dissipation neared completion (but this depends on the validity of linear equations which model the inherently nonlinear asteroidal eccentricity pumping); (c) it is reasonable to propose a common origin for the eccentricies of Mars and the asteroids. A simple extension of the model also accounts for the quasi-Gaussian distribution of the number density of asteroidal eccentricities.  相似文献   

20.
The PLANCK mission, originally devised for cosmological studies, offers the opportunity to observe Solar System objects at millimetric and submillimetric wavelengths. In this paper we concentrate on the asteroids of the Main Belt, a large class of minor bodies in the Solar System. At present, more that 40 000 of these asteroids have been discovered and their detection rate is rapidly increasing. We intend to estimate the number of asteroids that can be detected during the mission and to evaluate the strength of their signal. We have rescaled the instrument sensitivities, calculated by the LFI and HFI teams for sources fixed in the sky, introducing some degradation factors to properly account for moving objects. In this way a detection threshold is derived for asteroidal detection that is related to the diameter of the asteroid and its geocentric distance. We have developed a numerical code that models the detection of asteroids in the LFI and HFI channels during the mission. This code performs a detailed integration of the orbits of the asteroids in the timespan of the mission and identifies those bodies that fall in the beams of PLANCK and their signal strength. According to our simulations, a total of 397 objects will be observed by PLANCK and an asteroidal body will be detected in some beam in 30% of the total sky scan-circles. A significant fraction (in the range from 50 to 100 objects) of the 397 asteroids will be observed with a high S/N ratio. Flux measurements of a large sample of asteroids in the submillimeter and millimeter range are relevant since they allow to analyze the thermal emission and its relation to the surface and regolith properties. Furthermore, it will be possible to check on a wider base, the two standard thermal models, based on a nonrotating or rapidly rotating sphere. Our method can also be used to separate Solar System sources from cosmological sources in the survey. This work is based on PLANCK LFI activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号