首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Road dust samples were collected from four different areas having different landuse patterns: industrial, heavy traffic, residential and mixed use in Delhi city of India. The samples were analyzed for Ba, Co, Cr, Cu Fe, Mn, Ni, Pb and Zn by ICP-AES. Results indicate high levels of Co, Cr, Cu, Mn and Ni in samples collected from industrial area. Ba, Pb and Zn showed higher concentration levels in heavy traffic area while Fe did not show any discernible variation between the localities. The concentrations of Fe, Mn, Ba, Zn, Cr, Cu, Pb, Ni and Co showed a decreasing trend. The content of heavy metals was comparable to those in other cities in the world. A multivariate statistical approach which includes Pearson’s correlations and principal component analysis was used to identify the possible sources of metals in the road dust. Enrichment factors were estimated for further confirming the sources of contamination. Significant positively correlations between road dust metals Cu–Mn–Co–Cr–Ni suggest that major common source of origin is industrial activities. A meaningful correlation between Ba and Zn, and a moderate positive correlation between Pb and Ba indicate the influence of traffic activities. Enrichment factors calculation indicated that Pb, Cu, Cr and Zn are moderately enriched whereas Co, Ni and Mn are less enriched while Ba exhibited very low enrichment in the dust samples. The results indicate that industrial and vehicular traffic are the two major sources. Traffic appears to be responsible for the high levels of Zn, Cu and Ba. High concentration of Co, Cr, Cu and Mn may be due to industrial sources.  相似文献   

2.
Road dust collected from India’s richest and oldest coal mining belt of Dhanbad and Bokaro regions was analysed for particle size characteristics and elemental composition. The particle size distribution pattern shows dominance of 500–250 μm and 250–125 μm size fractions, constituting 45–58% of the mass size spectrum. Si is the most dominant element and its concentration varied between 29.3 and 36.4% with the average value 34.3%. Fe, Ti and Mn are the dominant heavy metals followed by Zn, Cr, Pb, Cu, Ni and Co. No significant differences concentration of metals between sampling sites was apparent; however, some sites tend to accommodate relatively higher metals due to its proximity to industrial and mining sites. In general, finer fraction (<63 μm) tend to contain 1–3 times higher metals as compared with the bulk composition. Except Pb and Mn all the measured metals are generally lie below grade zero, suggesting that there is no pollution threat with respect to these metals in roadway dust from the studied sites. Geochemical speciation study shows that the lithogenic phase is the major sink for heavy metals. Fe–Mn oxide and organic are the major non-lithogenic phases and Pb and Zn are the major elements of the non-lithogenic phase.  相似文献   

3.
为探究绿洲城市道路积尘重金属污染风险,在新疆库尔勒市采集54个代表性道路积尘样品,分析其中Hg、Cd、As、Pb、Cr和Cu等6种元素含量,基于GIS技术与地学统计法,采用污染负荷指数法和US EPA健康风险评价模型,对道路积尘中重金属污染及潜在健康风险进行评价。结果表明:库尔勒市道路积尘中Hg、Cd、As、Pb和Cu等元素含量的平均值均小于土壤环境质量—建设用地土壤污染风险管控标准(GB 36600—2018)中的筛选值,但Cr元素含量平均值为相应筛选值的9.90倍。污染评价结果表明,研究区道路积尘中Cr呈现重度污染,Hg、Cd、As、Pb和Cu呈无污染。道路积尘中重金属元素的污染负荷指数介于0.0142~0.0522,平均值为0.0266,处于无污染水平。从道路积尘重金属污染空间分布格局来看,库尔勒市东北部和北部区域出现污染高值区。健康风险评估结果表明,经手-口摄入途径是库尔勒市道路积尘重金属日均暴露量及健康风险的主要途径,儿童受到的健康风险高于成人。库尔勒市道路积尘中Hg、Cd、As、Pb、Cr与Cu等元素的非致癌风险及致癌风险处于安全范围内,As对非致癌风险的贡献最大,Cr对致癌风险的贡献最大。  相似文献   

4.
The concentrations of n-alkanes, unresolved complex mixture (UCM), petroleum molecular markers, other tracers of cooking and burning emissions, and natural background in atmospheric particles and roadside dust particles were measured at eight locations in the city center and the suburbs of Kuala Lumpur, Malaysia. Atmospheric particles were collected using high-volume filtration (PM-10, GFF) over 24 h average periods. Road dusts were swept up, dried and sieved. Both types of samples were extracted with dichloromethane/methanol mixture (3:1 v/v) by ultrasonic agitation. The extracts were then fractionated by column chromatography and the alkanes subjected to gas chromatography–mass spectrometry (GC–MS). Total extracts were also analyzed directly by GC–MS after silylation. The molecular distributions of compounds as well as diagnostic geochemical ratios were determined in order to identify the sources of the organic compounds. Samples collected from a rural area and lubricating oils were also analyzed for comparisons. Anthropogenic and biogenic sources such as vehicular emissions, waxes of higher plants, food cooking operations, and biomass and domestic refuse burning processes contributed to the organic matter content of atmospheric and to lesser extent, roadside dust particles.  相似文献   

5.
Studies on seasonal changes of heavy metal concentration in soils provide vital information for best management options at all times. The study investigated temporal variation in concentration of heavy metals in three towns having automobile service centres in Imo State. The study site is characterized by two major seasons in a year. Heavy metals were found in both arable and automobile soils, but more concentrations were recorded on the latter. Mean values of Cd, Cr, Ni, Hg and Pb were 6.2 mg/kg, 4.7 mg/kg 6.5 mg/kg, 0.02 mg/kg and 71.9 mg/kg respectively in the dry season while 2.9 mg/kg Cd, 2.2 mg/kg Cr, 1.9 mg/kg Ni, 0.01 mg/kg Hg and 51.9 mg/kg Pb were recorded during the rainy season of the experimental period. Higher values of heavy metal concentration were found in automobile soils as follows: 18.1 mg/kg Cd, 12.0mg/kgCr, 16.3 mg/kg Ni, 4.8 mg/kg Hg and312.8 mg/kg Pb in rainy season, and 15.1 mg/kg Cd, 8.1 mg/kg Cr, 11.9 mg/kg Ni 2.7 mg/kg Hg and 267.9 mg/kg Pb. However, Cd showed highest variability in arable soils during the dry season (CV=79%) while Hg varied widely in automobile soils in the rainy season (CV=54%).  相似文献   

6.
This study aimed to (1) investigate microrubbers (MRs) for the first time and identify microplastics (MPs) in street dust, (2) determine the physicochemical and mineralogical characteristics and morphology of dust particles, (3) understand the concentration and the possible source(s) of heavy metals/metalloids, (4) identify the chemical speciation and mobility potential of trace metals in urban street dusts, and (5) determine adverse health effects of street dust on children and adults living in the city of Bushehr in southwestern Iran. Generally, twenty four street dust samples were collected and analyzed. Calculated enrichment factors indicate high levels of contamination. Statistical analysis reveals that the two main sources of trace elements include road traffic emissions (Cu, Zn, Sb, Hg, Pb, Mo) and re-suspended soil particles (Al, Mn, Ni, Ti, Cd, Co). BCR sequential extraction results indicated that As, Zn, Cu, and Pb mainly occur in the exchangeable fraction and hence are highly bioavailable. X-ray powder diffraction analysis revealed the presence of calcite, dolomite, quartz, and magnetite. The size distribution of dust particles was also investigated using a scanning electron microscope (SEM), while elemental distribution was analyzed using an attached energy dispersive X-ray spectrometer (SEM–EDS) unit. Dust particles from heavy traffic areas are much finer compared with other investigated areas. MPs and MRs, mostly fibers and fragments, were detected in all samples [ranging from 210 to 1658 (MPs) and 44 to 782 (MRs) items/10 g dust] using fluorescence microscopy. The hazard index for As is higher than 10?4 for children and adults indicative of high risk. According to the calculated potential ecological risk index, Hg indicated moderate ecological risk in the street dust of the study area.  相似文献   

7.
This paper aims to assess the applicability of the electrodialytic remediation technique for the removal of zinc, lead, copper and cadmium from municipal solid waste (MSW) incinerator fly ash. A broad range of experimental conditions were studied including current densities, remediation times, use of assisting agents and cell design.

Several operational problems were identified during the electrodialytic experiments, among which are formation of precipitates, dryness of sample and partial dissolution of sample creating preferential pathways for the electric current. These problems may explain the low remediation efficiencies obtained.

Comparison between experiments showed that generally the use of Na-gluconate as assisting agent leads to better results than distilled water. Increasing the concentration of the assisting agent also results in higher removals.  相似文献   


8.
城市路面径流重金属固液分配系数及其影响因素   总被引:3,自引:0,他引:3       下载免费PDF全文
以上海市中心城区为例,探讨路面径流重金属在颗粒物-水相间的分配特征及其影响因素.研究表明,路面径流Cr的25%分位数浓度值,以及Zn、Pb、Cd的90%分位数浓度值超出地表Ⅴ类水标准,Cu和Ni污染程度较轻.径流重金属Pb、Zn、Cu及Cd总量浓度与悬浮颗粒物(TSS)含量呈现较明显的正相关关系,Ni与TSS浓度相关性不显著.径流冲刷过程中Cu和Ni溶解态含量比例平均值为35%;Zn和Cr平均值为19%~22%;Cd和Pb溶解态比例最低,平均值为4%~8%.应用扣除残渣态后的颗粒物重金属含量计算固液分配系数依次为Pb>Cd>Zn>Ni>Cu>Cr.径流中悬浮颗粒物浓度与固液分配系数存在显著负相关关系,呈现明显的"颗粒物浓度效应",径流pH值在6.4~7.2区间时对固液分配系数影响相对较小.  相似文献   

9.
 The potential use of treated solid by-product of oil shale to treat aqueous solutions containing several heavy metals, i.e., Cd(II), Cu(II), Cr(III), Ni(III), Pb(II) and Zn(II), was explored. Different experimental approaches including equilibrium batch mode experiments and X-ray fluorescence (XRF) were used to explore the feasibility of this material as a cheap adsorbent for the removal of these heavy metals from predetermined solutions. Results indicate that the solid by-product of oil shale removes Cd(II), Cu(II), Ni(II), and Pb(II), from aqueous solutions by adsorption, but did not remove the other heavy metals investigated in this study. Received: 20 April 1998 · Accepted: 20 November 1998  相似文献   

10.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

11.

Small-scale flash flood events are climate-related disasters which can put multiple aspects of the system at risk. The consequences of flash floods in densely populated cities are increasingly becoming problematic around the globe. However, they are largely ignored in disaster impact assessment studies, especially in assessing socioeconomic loss and damage, which can provide a significant insight for disaster risk reduction measures. Using a structured questionnaire survey, this study applied a statistical approach and developed a structural equation model (SEM) for assessing several socioeconomic dimensions including physical impacts, mobility disruption, lifeline facilities, health and income-related impacts. The study reveals that respondents have experienced a stronger impact on direct tangible elements such as household contents and buildings as well as direct intangible elements with β coefficients 0.703, 0.576 and 0.635, respectively, at p?<?0:001 level. The direct intangible impacts affect mobility disruption with β coefficients equal to 0.701 at p?<?0:001 level which then further cause adversity to income-generating activities with β 0.316 at significant p?<?0:001 as well. The overall model fit indices show highly acceptable scores of SRMR 0.068, RMSEA 0.055 and PClose 0.092. Thus, the SEM has successfully incorporated the socioeconomic dimensions of disaster impact and explained the impact phenomena reliably. This modeling approach will allow inclusion of various variables from different disciplines to assess hazard impact, vulnerability and resilience.

  相似文献   

12.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

13.
A total of 42 samples of road dust were collected along ring road, city centre, city side, and freeway in Urumqi, China. Total concentrations of Cd, Cr, Cu, Ni, Pb, Mn, Be, Co, Zn, and U were determined by using the inductively coupled plasma-mass spectrometry in order to assess and to compare road dust contamination levels of metals among the four roads. The results show that, among the four categories of roads, mean concentrations of Co and U vary little. City centre locations show strong enrichments of Cd, Cu, Pb, and Be. Along the ring road, the highest mean concentrations were found for Cr, Ni, Mn, and Co. However, the highest concentrations of Zn and U were found along the freeway. The cluster analysis shows that three main groups can be distinguished. Every group may be associated with different main sources and concentrations of the metals. The results of contamination assessment reveal that, among all of the potential toxic metals, Cd, Cu, and Zn pollution were obviously heavier with moderate or high contamination indices for most road dust samples, while Cr, Ni, and Pb contamination were lower along the four categories of roads. Compared with the city side, Cd, Cu, Pb, Ni, and Zn contamination were heavier along the ring road, the city centre, and the freeway with high traffic density. Low Pb contamination or no contamination in all the road dust samples may be related to the increasing usage of lead-free petrol.  相似文献   

14.
A sequential extraction procedure has been used to study the changes in the distribution and mobility of Cd, Cr, Cu, Ni, Pb and Zn in an acid lateritic soil amended with alkaline coal ash and neutral sludge individually and with their mixture of equal proportions at 25, 50 and 75 Mg/ha application rates and grown in a crop with peanuts. A separate set of experiments consisting of the same treatments was repeated with the addition of lime at 2 Mg/ha. Increases in total heavy-metal levels with application of various amendments were mainly associated with increases in the insoluble and less mobile forms of metals except for Cd, which showed an increase in its exchangeable form. An increase in pH of the amended soil restricted the metal mobility in their labile forms and was more pronounced after liming the treatments. Positive yield responses were observed in the amended soil, the magnitude being higher in only sludge-applied treatments. The vegetative plant parts showed maximum accumulation of metals indicating a physiological barrier in the transfer of metals from the root to the kernel. Linear relationships of total concentrations of heavy metals in soil with that in the crop were observed. Lime addition to the treatments further reduced the transfer and accumulation of metals from the soil to the plant, even though the relationship remained linear.  相似文献   

15.
Street dust from 29 locations, in some of the busiest parts of north and south Kolkata, was analysed for heavy metal composition. The decreasing order of average metal concentrations (mg kg?1) found was Mn (390) > Pb (380) > Zn (300) > As (96) > Cu (61) > Cr (40) > Co (13) > Ag (2.1). The heavy metal composition of the Kolkata dust was compared with reported data for other cities. Enrichment factors of Pb and As were high. Multivariate statistical analysis of the heavy metals and analysis of lead isotopic ratios of the dust revealed a predominant anthropogenic influence in the contamination. The range of lead isotopic ratios found in the dust was between 0.8789 and 0.8998 with a mean Pb concentration of 383 mg kg?1. The three Pb isotope plots of street dust, diesel and rainwater clustered linearly, while coal did not fit into this trend. The highest 207/206 lead isotopic ratio obtained was from diesel with a mean value of 0.9015, followed by the rainwater sample. The application of the binary mixing model showed that about 66.86% of lead contamination in the street dust was sourced from the atmosphere. The two components extracted by the principal component analysis explained 64.34% of the total variance. Vehicular and industrial emissions appeared to be an important contributor to the accumulation of heavy metals in the dust. The health risk assessment study of the dust indicated carcinogenic risk associated with As and Cr.  相似文献   

16.
The development of industrial activity in recent years has promoted the pollution in this environment causing health problems to workers and the neighbourhood nearby. In order to determine the influence of different industrial activities in metals concentration and behaviour in soil and road dust, samples from three different industrial areas (service industry; refinery, fertilizer and power industry; and tannery industry) and a natural area were collected. Physical–chemical properties, metal content (Pb, Zn, Cu, Cr, Co, Ni) and the chemical distribution of metals were carried out. Results show largest accumulation of metals in road dusts samples for all industrial areas, being Zn, Pb, Cr and Cu the metals with highest concentrations. Each industrial activity contributes differently to the concentration of metals in soil and dust, and the highest concentrations of Cr were found from tannery industries, while Pb and Zn showed the highest concentration from refinery and fertilizer industry. It has been showed that industrial activity has influence on the physicochemical properties of soil and road dust and on the bioavailability of all metals. Chemical partitioning indicates that Pb, Zn, Cu and Cr distribution in the different solid phases is affected by industrial activity, while Co and Ni distribution is not affected by the industrial activity.  相似文献   

17.
18.
The knowledge of the variability, the anthropogenic versus natural origin and corresponding environmental risk for potentially harmful elements in urban topsoils is of importance to assess human impact. The aims of the present study were: (1) to assess the distribution of heavy metals (Sn, Li, Ga, Ba, Fe, Mn, Co, Be, Ti, Al, Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Zn, Cu, Pb, Se, Mo, Sc and Ag) in urban environment; (2) to discriminate natural and anthropogenic contributions; and (3) to identify possible sources of pollution. Multivariate statistic approaches (principal component analysis and cluster analysis) were adopted for data treatment, allowing the identification of three main factors controlling the heavy metal variability in Xuzhou urban topsoils. Results demonstrate that Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Br, Zn, Cu, S, Pb, Se, Mo, Sc and Ag could be inferred to be tracers of anthropogenic pollution, whereas Al, Ti, Ga, Li, V, Co, Pt, Mn and Be were interpreted to be mainly inherited from parent materials. Iron, Ba, Sn, Pd and Br were interpreted to be affected by mixed sources.  相似文献   

19.
20.
Mobility of heavy metals from coal fly ash   总被引:7,自引:0,他引:7  
The mobility of Cd, Co, Cu, Ni, Pb, Sb, and Zn from six different coal-fired power plant fly ashes that show a wide compositional range was examined using a sequential extraction procedure in order to assess their mobility when these wastes are ponded or landfilled. The extraction sequence was as follows: (1) water extractable, (2) cation exchangeable (CH3COONH4 at pH 7), (3) surface oxide-bound cations (CH3COONH4 at pH 5), (4) Fe oxide-bound cations (HONH3Cl), and (5) residual (HF, HCl, HNO3, 211). The heavy metal contents in the extraction solutions were determined by anodic (Cd, Cu, Pb, Sb, and Zn) and cathodic (Ni and Co) stripping voltammetry. The results reveal differences in the total contents of the selected trace elements among the fly ash samples, which must be related to differences in coal composition and combustion technology. The extractable fraction under natural conditions ranges from 1.5 to 36.4 percent of the total element content. Cadmium, Co, Cu, and Zn show the highest extractable fraction (10.8–18.9 percent on average). Cadmium is the most easily water-extractable element, while Co, Cu, and Zn increase their mobility as the severity of the extraction increases. Cobalt, Ni, Pb, and Zn are mainly associated with the surface oxide-bound and Fe oxide-bound fractions. Nickel, Pb, and Sb have low mobility potentials (5.3–6.6 percent as extractable fraction), but Sb presents a relatively high water-extractable fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号