首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chah Nimeh reservoirs have served as a water storage facility, especially during droughts over the last three decades. It is also an important wintering site for migratory birds. In this study, thematic mapper time-series data were derived from Landsat images for prolonged droughts that occurred in two satellite images (2002 and 2011). The data derived from these images were used for the detection of changes in land cover and water storage in the reservoirs. First, a vegetation cover map was produced using soil-adjusted vegetation index and field sampling. Subsequently, land use/cover maps were generated using supervised and hybrid image classification method. Using the spatial change detector (SCD v1.0) software extension, the layers were combined and the change map was generated. The overall accuracy of the produced thematic images was assessed in regards to quantity and allocation disagreements. A total of five classes were defined in this investigation: deep water, shallow water, vegetation, salt land and bare land. The results showed that during the period of study, water volume reduced and vegetation cover increased, especially around the reservoirs that are important as shelter for wintering migratory birds. Comparison of land use/cover maps showed the increase in total available surface of shallow water, which indicated an increase in the habitats for surface feeding and diving birds.  相似文献   

2.
The Sistan area is located in the east of Iran, enclosure to Afghanistan border. It is a densely populated enclave in the scarcely populated arid area of the eastern part of Iran, where the life strongly depends on the shallow water of Hamoun Lake and wetlands in the delta of the Helmand River flows from the Hindukush Mountains in western Afghanistan. As the water resources are scarce in this arid region, the availability of freshwater in Hamoun Lake has caused many socioeconomic and environmental effects in study area during several years. Various categories of socioeconomic criteria have been defined that are influenced by the Hamoun wetland, namely employment, economic value of fish catch, reeds harvest and birds hunt, food supplying and its influence on the microclimate of the region and the severity of the sandstorms, health and finally provision of recreational opportunities in the region. On the other hand, the high evaporation rates in a very dry region and climatic fluctuations make very vulnerable ecosystem, causing several environmental challenges into human activities. Prolonged droughts due to decrease in annual rainfall in the Hirmand watershed based on climate change in the last decade have been recorded in this environmental hazardous area. Drying up of Hamoun Lake and dead reed system in the wetlands was monitored in the present study using the time series of satellite imagery. The lifelessness of Hamoun Lake has caused several environmental effects such as sandstorm and dust hazard, destroying vegetation, vanishing crop production, damage to fish and bird habitat, extensively decreasing reeds harvesting, reducing livestock and increasing wildlife death rates, increasing air pollution and consequently health problems, salty soil movement over the agriculture fields, etc., which have been identified as the outcome of this research.  相似文献   

3.
Natural Hazards - The synthetic aperture radar SAR system with the capability of imaging during the night, day, and the all-weather conditions has a high potential in change detection on the ground...  相似文献   

4.
5.
6.
7.
The Doosti Dam was built across the Harirood River on the border between Turkmenistan and Iran. During the reservoir impounding, leakage occurred as new springs through the sandstone layers of the Pesteleigh Aquifer and limy sandstone and limestone layers of the Neyzar–Kalat Aquifer, at the right abutment of the dam. To evaluate the grout curtain operation, a tracer test was carried out by injection of Uranine in a borehole located at the upstream of grout curtain in the Pesteleigh Aquifer. Tracer test results demonstrated a diffuse flow component through the grout curtain in the Pesteleigh Aquifer, but no tracer was detected at the main leakage point, SP1 Spring, emerged downstream of grout curtain from the Neyzar–Kalat Aquifer. Using the spectral coherency function, the lag time between changes in the water level of the injection borehole and water level in the tracer detected boreholes or discharge of the tracer detected springs was determined. Linear regression analyses indicated that the estimated lag time by the time series analysis was close to the first arrival time of the tracer. Therefore, the estimated velocities based on the lag time of time series could be considered close to the calculated velocities based on the first arrival time of the tracer. The estimated groundwater velocities based on the time series analysis ranged from 3.91 to 20.31 m h?1, showed that diffuse flow dominated pathways from the reservoir toward the downstream boreholes in the Neyzar–Kalat Aquifer, while conduit flow was present within the pathways toward the SP1 Spring. Regarding the reservoir volume, the negligible amount of leakage at the maximum water level of the reservoir confirmed well overall operation of the grout curtain at the dam site.  相似文献   

8.
9.
Groundwater is the main source of water in arid and semi-arid regions, so it is very important to recognize vulnerable parts of aquifer under future climate change conditions. In this research, 16 climate models were evaluated based on weighting approach. HADCM3 and CGCM2.3.2a models were selected for temperature and precipitation prediction, respectively. LARS-WG was used for downscaling AOGCMs outputs. Results show that temperature increase by 1.4 °C and precipitation changes between +10 and ?6 % under B1 and A2 emission scenario, respectively. Runoff volumes will decrease by ?39 % under A2 emission scenario whereas runoff volume will increase by +12 % under B1 emission scenario. Simulation of groundwater head variation by MODFLOW software indicates higher groundwater depletion rate under A2 scenario compared to B1 scenario. Groundwater model outputs indicate that the most vulnerable part of the aquifer is located in the southwest region. Large number of extraction wells and low aquifer transmissivity are the reasons for high vulnerability of the region.  相似文献   

10.
11.
Wang  Dayang  Wang  Dagang  Mo  Chongxun  Du  Yi 《Natural Hazards》2021,108(2):1585-1608

The risk analysis of reservoir regulation in the flood season is crucial and provides the valuable information for reservoir flood control, safety operation, and decision making, especially under climate change. The purpose of this study is to propose a framework for reasonably estimating the variation of reservoir regulation risk including the dam extreme risk and the overtopping risk during the flood season under climate change. The framework consists of an integrated diagnostic system for detecting the climate abrupt change time, a copula function-based bivariate statistical approach for modeling the dependence between the flood peak and flood volume, a Monte Carlo simulation for generating numerous random flood peak–volume pairs, and a risk calculation model for routing the design flood hydrographs to obtain the frequency curve of the maximum water level reached in front of dam and evaluating the reservoir regulation risk. The methodology was implemented in the Chengbihe reservoir in south China by using the 55-year (1963–2017) hydrometeorological data, including temperature, evaporation, precipitation, and streamflow, in the flood season. Results show that the hydrometeorological series during the flood season changed abruptly in 1992 and the entire data can be divided into two periods (1963–1992 and 1993–2017). The dam extreme risk and overtopping risk during the two periods are assessed, respectively, and a comparison analysis is made based on different flood limit water-level schemes (185.00–188.50 m). It demonstrates that both the dam extreme risk and the dam overtopping risk increase under the influence of climate change. The dam extreme risk increases by 22.91–95.03%, while the climate change-induced increase in the dam overtopping risk is between 38.62 and 123.59%, which indicates that the dam overtopping risk is more sensitive to climate change than the dam extreme risk. The risk evaluations in the study are of great significance in the safety operation and risk management of reservoirs under future climate change.

  相似文献   

12.
13.
In the Kushkak Valley (Khuzestan, Southwest Iran) an anticlinal structure has partially impounded an ephemeral stream. This natural impounded area has been chosen for an artificial recharge site due to its current rate of recharge, capability to store water and favorable situation for the construction of man-made barriers to stream flow. The aquifer to be recharged is the Kushkak unconfined aquifer which consists of medium to coarse-grained alluvial deposits that overlie consolidated conglomerate rock. In this semi-arid area with infrequent relatively heavy falls of rain, alluvial aquifer recharge can be an important process that sustains shallow, over-exploited groundwater bodies. In this investigation a multidisciplinary approach including: hydrometerological studies, and a detailed hydrogeochemical survey, have been carried out. Other essential prerequisite parameters for the scheme were also taken into account to determine the suitability of this location for groundwater artificial recharge. The assessment has brought out that (1) the proposed reservoir will conserve a major part of the water being lost, (2) annual runoff of about 0.27 MCM can be injected into the aquifer through recharge from impounded water, (3) hydrochemical data from surface water and from the Kushkak aquifer water demonstrates that dilution and change in compositional trend in the groundwater proximal to the impounded alluvial bed areas would be expected based on the infiltration capacity of this site, and (4) cost–benefit ratio of the project is 1:2 and it is assumed to recover the investment within six years.  相似文献   

14.
Hanza Mountain in Urmia–Dokhtar Magmatic Arc, southeast of Iran, consists of monocline of Eocene volcanic rocks into which the Oligocene granitoid rocks have been intruded. This area has excellent potential for economic porphyry copper deposits with Bondar Hanza, Daralu, and Sarmesk deposits among them. Hanza Mountain is located between NW–SE horsetail thrust faults derived from the Gowk and Sabzevaran strike-slip faults. The analysis of the kinematics of these strike-slip faults shows that they were not the cause of the formation of the pull-apart basin; thus they have not directly played any effective role in localizing the final emplacement of porphyries responsible for the formation of these copper deposits, but the Cu mineralization occurred mainly within a set of normal and thrust faults in the region. The alteration types and faults in Bondar Hanza were distinguished using detailed local geology, including distribution of known mineralization, supported by remote sensing (ASTER), airborne geophysics, and topography; the relationship between mineralization and faults was examined using Rose diagrams and Fry Analysis. This investigation of Bondar Hanza deposit has revealed that the trend of faults and dykes, as well as the distribution of copper analyses within drill cores, is aligned with the main trend of mineralization. The NW–SE trending faults in the Urmia–Dokhtar Magmatic Arc are effective in localizing the emplacement of porphyry copper ore deposits and those that trend between N125°–N145° are key to further exploration.  相似文献   

15.
The Kopet-Dagh basin of northeastern Iran was formed during the Middle Triassic orogeny. From Jurassic through Miocene time, sedimentation was relatively continuous in this basin. The Shurijeh Formation (Neocomian), which consists of red bed siliciclastic sediments that were deposited in fluvial depositional settings, crops out in the southeastern part of the Kopet-Dagh basin. In addition to clastic lithofacies, non-clastic facies in the form of calcrete paleosols, were identified in this formation. The calcrete host rocks are mainly sandstone, pebbly sandstone. The calcrete in middle unit in the Shurijeh Formation consists of, from bottom to top: incipient calcrete, nodular calcrete, massive calcrete horizons. The maturity pattern of these calcrete gradationally increases from bottom to top in this unit. Lack of organo-sedimentary structure (mainly plant roots), diversity of calcite fabric, suggest that the studied calcretes have a multi-phase development: a short vadose phase followed by a long phreatic phase. These calcretes are neither pedogenic nor groundwater calcretes. Petrographic studies show that they are composed of micritic textures with a variety of calcite fabrics, microsparitic/sparitic veins, displacive, replacive fabrics, quartz, hematite grains. Cathodoluminescence images, trace elemental analysis (Fe, Mn increased, Na, Sr decreased) of calcrete samples show the effects of meteoric waters during the calcrete formation when water tables were variable. In this study, we conclude that evaporation, degassing of carbon dioxide are the two main factors in the formation of non-pedogenic or groundwater calcrete. The sources of carbonate were probably parent materials, surface waters, ground waters, eolian dusts, numerous outcrops of limestones that have been exposed in the source area during Neocomian time.  相似文献   

16.
Geomechanics is a science dealing with the study of the behaviour of rocks affected by stress. It has various applications in utilisation from oil and gas reservoirs including of the wellbore stability analysis and determination of safe mud window. The main aim of this paper is geomechanical study of Kangan–Dalan reservoir in South Pars gas field in Persian Gulf in south Iran. Seismic waves are affected by physical properties of rocks when passing underground formations; thus, the velocity of these waves is a desired parameter for estimation of geomechanical properties. The velocity of compressional and shear waves has been determined with processing seismic data resulting from vertical seismic profile. In this paper, after calculation of elastic modules of reservoir rock, the imposed stress field was determined and these concepts were used for engineering calculations such as safe mud window, wellbore stability analysis and sand production potential. For well drilling in Kangan-Dalan reservoir, the minimum and maximum mud weights were proposed in average as 1.093 and 2.011 gr/cc and average critical mud weight as 2.48 gr/cc such that if the weight of mud increases, the tensile fractures will be created on the formation and complete loss of mud will happen.  相似文献   

17.
18.
Equivalent static load and dynamic analyses methods are usually used for designing structures under and subjected to earthquake excitations. Estimation of site response from an earthquake is fundamental step to anticipate the possible damages and then to try to mitigate them. In this paper, the effect of nonlinearity on site response analyses summarized and evaluating ground surface response taking into account the local soil and subsurface soils properties for the proposed bridge over the river at Sirdjan Boulevard road subjected to earthquake vibration and provokes with assumption of rigid (viscoelastic) and elastic half space bedrock and quantify the site effect on the surface over a number of geotechnical areas has been notified. First, by field investigation, the required data were collected and by primary processing the acceptable data were selected. Then, in nonlinear analysis, for elastic and rigid half space bedrock, standard hyperbolic model was selected and executed, and then the results were compared to each other. The critical point of this work was to develop and use a computer code by the authors, named the “Abbas Converter”, with several advantages, such as work and quick installation, operating as a connecter function between the used softwares and generating the input data corresponding to defined format for them. Its output results can easily be exported to the other used softwares in this study. This code can make and render this study more easily than the previous softwares have done, and take over the encountered problem. This study clearly showed the applicability of the “Abbas Converter” for evaluation of site response with bedrock-type assumption on soil behavior under the earthquake excitations. The proposed scheme is used to analyze the ground motion data from the Bam earthquake in Kerman Province, Iran (2003, Mw 6.5).  相似文献   

19.
A geomechanical model can reveal the mechanical behavior of rocks and be used to manage the reservoir programs in a better mode. Fluid pressure will be reduced during hydrocarbon production from a reservoir. This reduction of pressure will increase the effective stress due to overburden sediments and will cause porous media compaction and surface subsidence. In some oil fields, the compacting reservoir can support oil and gas production. However, the phenomena can also cause the loss of wells and reduced production and also cause irreparable damage to the surface structures and affect the surrounding environment. For a detailed study of the geomechanical behavior of a hydrocarbon field, a 3D numerical model to describe the reservoir geomechanical characteristics is essential. During this study, using available data and information, a coupled fluid flow-geomechanic model of Fahlian reservoir formation in X-field in SW of Iran was constructed to estimate the amount of land subsidence. According to the prepared model, in this field, the maximum amount of the vertical stress is 110 MPa and the maximum amount of the horizontal stress is 94 MPa. At last, this model is used for the prediction of reservoir compaction and subsidence of the surface. The maximum value of estimated ground subsidence in the study equals to 29 mm. It is considered that according to the obtained values of horizontal and vertical movement in the wall of different wells, those movements are not problematic for casing and well production and also the surrounding environment.  相似文献   

20.
Estimation of mineral resources and reserves with low values of error is essential in mineral exploration. The aim of this study is to compare inverse distance weighted (IDW) and ordinary kriging (OK) methods based on error estimation in the Dardevey iron ore deposit, NE Iran. Anisotropic ellipsoid and variograms were calculated and generated for estimation of Fe distribution by both methods. Density, continuity of ore and waste, the number of points involved, and the discretization factor in the estimation of ore and waste boundaries were determined and the resource estimated by IDW and OK methods. Estimation errors were classified based on JORC standard, and both methods were compared due to distribution of error estimation. Results obtained by the study indicate that error estimation of OK method is less than IDW method and that the results of OK method are reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号