共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Textural evolution and compositional variation of clinopyroxenes in Ward Creek metabasites are described. Pyroxenes change, with increasing grade, from finegrained aggregates through fan-shaped medium-grained prisms to blocky coarse crystals. Characteristic features of metamorphic pyroxenes include: (1) the occurrence of coexisting pyroxene pairs, the compositions of which are used to delineate compositional gaps; (2) the existence of large compositional variations of pyroxenes, within a single specimen, which record a considerable span of P and/or T for crystallization; and, (3) the development of compositional trends in single specimens and in three metamorphic zones which are progressive in nature. The first formed clinopyroxene (Jd20Aug65Ac15) in the lower lawsonite zone mimics the composition of relict igneous augite. It changes continuously, with increasing grade, at nearly constant low XJd content towards acmite. At a composition around Jd20Aug30Ac50, the trend turns towards jadeite and intersects a solvus to form two coexisting clinopyroxenes in the middle lawsonite zone. At higher grade, the compositional gap becomes restricted towards the jadeite-omphacite join and clinopyroxene increases in XJd toward jadeite. A reversed compositional trend occurs at higher grade; clinopyroxenes decrease in jadeite component at nearly constant Aug/Ac ratio of 50/50 and finally become omphacite in the uppermost pumpellyite and epidote zones. The Na–Ca pyroxenes, close to the binary join Jd–Ac, occur in the lawsonite- and pumpellyite-zones, ranging from XJd= 1.0–0.30 together with Ab and Qz. The ubiquitous occurrence of aragonite at temperature estimates of 170–240° C by Taylor & Coleman (1968) for these zones does not support the low-temperature extrapolation of the Jd–Ab–Qz curve by Holland (1980). The estimated metamorphic field gradient indicates an inflection point at 7 kbar, 200° C. Below this, blueschist facies metamorphism proceeded under dominant pressure-increase from 4 to 7 kbar at nearly constant temperature, about 150–200° C, whereas at higher grade recrystallization, above the inflection point, the metamorphic temperature increased from 200 to 350° C at nearly constant pressure, about 7–8 kbar. Such an inflection point suggests the depth of underplating of either seamounts or accretionary packages in a subduction zone. 相似文献
2.
《International Geology Review》2012,54(10):1253-1277
ABSTRACTSeafloor subduction and subduction-zone metamorphism (SZM) are understood to be the very cause of both subduction-zone magmatism and mantle compositional heterogeneity. In this article, we compile geochemical data for blueschist and eclogite facies rocks from global palaeo-subduction-zones in the literature, including those from the Chinese Western Tianshan ultrahigh pressure (UHP) metamorphic belt. We synthesize our up-to-date understanding on how chemical elements behave and their controls during subduction-zone metamorphism. Although the compositional heterogeneity of metamorphic minerals from subducted rocks has been recently reported, we emphasize that the mineral compositional heterogeneity is controlled by elemental availability during mineral growth, which is affected by the protolith composition, the inherited composition of precursor minerals, and the competition with neighbouring growing minerals. In addition, given the likely effects of varying protolith compositions and metamorphic conditions on elemental behaviours, we classify meta-mafic rocks from global palaeo-subduction-zones with varying metamorphic conditions into groups in terms of their protolith compositions (i.e. ocean island basalt (OIB)-like, enriched mid-ocean ridge basalt (MORB)-like, normal [N]-MORB-like), and discuss geochemical behaviours of chemical elements within these co-genetic groups rather than simply accepting the conclusions in the literature. We also discuss the geochemical consequences of SZM with implications for chemical geodynamics, and propose with emphasis that: (1) the traditionally accepted ‘fluid flux induced-melting’ model for arc magmatism requires revision; and (2) the residual subducted ocean crust cannot be the major source material for OIB, although it can contribute to the deep mantle compositional heterogeneity. We also highlight some important questions and problems that need further investigations, e.g. complex subduction-zone geochemical processes, different contributions of seafloor subduction and resultant subduction of continental materials, and the representativeness of studied HP–UHP metamorphic rocks. 相似文献
3.
Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine 总被引:5,自引:0,他引:5
Mafic gneisses occur as lenses or thin layers in spatial association with tonalitic leucosomes in a granulite zone of the
Quetico subprovince of the Superior Province, Ontario, Canada, and exhibit concentric zoning with a biotite-rich margin, orthopyroxene-rich
outer zone, clinopyroxene-rich central zone, and, occasionally, patches of relict amphibolites within the clinopyroxene-rich
zone. The granulites (biotite-, orthopyroxene- and clinopyroxene-rich zones) in the mafic gneisses are characterized by significant
amounts of rare earth element (REE)-bearing fluorapatite (1–10 vol.%) and other REE-rich minerals (allanite, monazite and
zircon). Fluorapatite shows an increase in modal abundance from the biotite- and orthopyroxene-rich zones to the clinopyroxene-rich
zone, but is rare in the relict amphibolites. Textural evidence and element partitioning indicate that fluorapatite (and other
REE-rich minerals) was part of the peak metamorphic assemblages. Whole-rock geochemical analyses confirm that the granulites
in the mafic gneisses contain anomalously high contents of REE and high field strength elements (HFSE), whereas the relict
amphibolites are geochemically typical of tholeiitic basalts. Mass-balance calculations reveal that REE and HFSE were introduced
into the mafic gneisses during the prograde granulite facies metamorphism, pointing to REE mobility under granulite facies
metamorphic conditions. The presence of high F contents in the REE-rich minerals and their associated minerals (e.g. biotite
and hornblende) suggests that REE and HFSE may have been transported as fluoride complexes during the granulite facies metamorphism.
This conclusion is supported by previously published results of hydrothermal experiments on the partitioning of REE between
fluorapatite and F-rich fluids at 700°C and 2 kbar.
Received: 2 May 1995 / Accepted: 28 September 1995 相似文献
4.
E. J. K. RAVNA T. B. ANDERSEN L. JOLIVET C. De CAPITANI 《Journal of Metamorphic Geology》2010,28(4):381-395
A new discovery of lawsonite eclogite is presented from the Lancône glaucophanites within the Schistes Lustrés nappe at Défilé du Lancône in Alpine Corsica. The fine‐grained eclogitized pillow lava and inter‐pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter‐pillow matrix consist of zoned idiomorphic Mg‐poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth‐type zoning with a Mn‐rich core. In the inter‐pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites. Matrix omphacite in both rock types is zoned with a rimward increase in XJd, locally with cores of relict augite. Numerous inclusions of clinopyroxene, lawsonite, chlorite and titanite are encapsulated within garnet in both rock types, and albite, quartz and hornblende are also found included in garnet from the inter‐pillow matrix. Inclusions of clinopyroxene commonly have augitic cores and omphacitic rims. The inter‐pillow matrix contains cross‐cutting omphacite‐rich veinlets with zoned omphacite, Si‐rich phengite (Si = 3.54 apfu), ferroglaucophane, actinolite and hematite. These veinlets are seen fracturing idiomorphic garnet, apparently without any secondary effects. Pseudosections of matrix compositions for the massive pillows, the inter‐pillow matrix and the cross‐cutting veinlets indicate similar P–T conditions with maximum pressures of 1.9–2.6 GPa at temperatures of 335–420 °C. The inclusion suite found in garnet from the inter‐pillow matrix apparently formed at pressures below 0.6–0.7 GPa. Retrogression during initial decompression of the studied rocks is only very local. Late veinlets of albite + glaucophane, without breakdown of lawsonite, indicate that the rocks remained in a cold environment during exhumation, resulting in a hairpin‐shaped P–T path. 相似文献
5.
Yong-Fei Zheng Xiao-Ying Gao Ren-Xu Chen Tianshan Gao 《Journal of Asian Earth Sciences》2011,40(2):427-451
The Zr content of rutile was analysed by both EMP and LA-ICPMS for low-T/UHP eclogite and enclosed kyanite–quartz veins in the Dabie orogen, China. Zr-in-rutile temperatures were calculated at different pressures and then compared with temperatures derived from Ti-in-zircon, mineral-reaction, quartz–mineral O-isotope and garnet–clinopyroxene Fe–Mg exchange thermometers. All thermometric data are interpreted within the framework of petrologically and geochronologically constrained P–T–t path. As a consequence, variable Zr-in-rutile temperatures for different occurrences of rutiles are used to indicate their growth in different stages during continental subduction-zone metamorphism. Thus, some rutiles would grow at the peak pressure, whereas other rutiles would either grow before the peak pressure during the subduction or grow at or after the peak temperature during exhumation. The mineral O-isotope and Fe–Mg exchange thermometers also yield variably lower temperatures for the eclogite. The similar results were obtained for mid-T/UHP eclogites in the Dabie-Sulu orogenic belt. This is ascribed to the characteristic P–T–t path of UHP metamorphic rocks, in which metamorphic temperatures at peak pressures are lower than the peak temperatures at decreased pressures during exhumation. Thus, there is a contest between thermodynamics and kinetics during metamorphic reactions in response to P–T changes. Therefore, the reasonable interpretation of thermometric data requires comprehensive understanding of thermometric methodology from physicochemical principles to geological applicabilities. 相似文献
6.
Abstract The mid-Tertiary blueschists, eclogites and eclogitic gneisses of northern New Caledonia are the products of four phases of regional metamorphism and deformation (D1–D4). Omphacite, lawsonite and Mn-rich garnet isogradic surfaces were developed during the second deformation (D2) under prograde pressure and temperature conditions. Subsequent deformations (D3–D4) folded these D2 isogradic surfaces. However, within the P-retrograde, T-prograde metamorphic environment of the D4 phase, omphacite altered to albite and chlorite; as a result, a late-stage sub-horizontal isogradic surface developed for omphacite-out where this mineral preserved as relics within syn-D4 albite porphyroblasts. Other minerals that crystallized for the first time (epidote) or had rim additions (almandine phengite) during D4, also form nearly horizontal isogradic surfaces. Porphyroblastic garnet and albite contain inclusion trails, which allow their microstructural development and crystallization of the matrix to be traced from D2 to D4. Late syn-D4 the temperature increased markedly in association with an extensive exothermic decarbonation, even though the rocks were in a state of pressure retrogression. This caused considerable neocrystallization, recrystallization and growth of mattix and porphyroblasts such that, although S2 foliation crenulated by D3 and D4 is readily observable, almost all signs of stored strain due to D3 and D4 have been removed, and the deeper schists and eclogitic gneisses superficially appear to have undergone a drastic annealing recrystallization, post-dating deformation. 相似文献
7.
A re-evaluation of eclogite facies metamorphism in SW Japan: proposal for an eclogite nappe 总被引:1,自引:0,他引:1
Known eclogite occurrences in the Sanbagawa metamorphic belt of SW Japan are dominantly in metagabbro bodies which have complex polyphase metamorphic histories. These bodies are generally described as tectonic blocks and their relationship to the Sanbagawa metamorphism is unclear. New findings of foliated eclogite in the Seba and Kotsu areas show that eclogite facies metamorphism is much more widespread than generally thought. Evidence that the foliated eclogite units originated as lavas or sediments implies that these units can be treated as a high-grade part of the subduction-related Sanbagawa metamorphism. Although separated by an along-strike distance of 80 km, the Seba and Kotsu eclogites have very similar garnet and omphacite compositions, suggesting that they were formed under similar metamorphic conditions. However, differences in the associated retrograde assemblages (epidote–amphibolite in the Seba unit and epidote–blueschist in the Kotsu unit) suggest contrasting P – T paths. In both units, the eclogite rocks occupy the highest structural level of the Sanbagawa belt and overlie rocks metamorphosed at lower pressure. The lower boundary to the eclogite units is therefore a major tectonic discontinuity locally decorated with lenses of exotic material. These features can help trace the boundary into other areas. The previously known outcrops of eclogite show enough similarities with the newly found areas to suggest that all the eclogite facies rocks in the Sanbagawa belt constitute a single nappe that lies at the highest structural levels of the orogen. 相似文献
8.
Caledonian eclogite facies shear zones developed from Grenvillian garnet granulite facies anorthosites and gabbros in the Bergen Arcs of western Norway allow direct investigation of the relations between macroscopic structures and crystallographic preferred orientation (CPO) in lower continental crust. Field relations on the island of Holsnøy show that the eclogites formed locally from granulite facies rocks by progressive development of: (1) eclogite adjacent to fractures; (2) eclogite in discrete shear zones (> 2 m thick); (3) eclogite breccia consisting of >80% well-foliated eclogite that wraps around rotated granulite blocks; and (4) anastomosing, subparallel, eclogite facies shear zones 30–100 m thick continuous over distances > 1 km within the granulite terrane. These shear zones deformed under eclogite facies conditions at an estimated temperature of 670 ± 50°C and a minimum pressure of 1460 MPa, which corresponds to depths of >55 km in the continental crust. Detailed investigation of the major shear zones shows the development of a strong foliation defined by the shape preferred orientation of omphacite and by alternating segregations of omphacite/garnet-rich and kyanite/zoisite-rich layers. A consistent lineation throughout the shear zones is defined by elongate aggregates of garnet and omphacite. The CPO of omphacite, determined from five-axis universal stage measurements, shows a strong b-axis maximum normal to foliation, and a c-axis girdle within the foliation plane with weak maxima parallel to the lineation direction. These patterns are consistent with deformation of omphacite by slip parallel to [001] and suggest glide along (010). The lineation and CPO data reveal a consistent sense of shear zone movement, although the displacement was small. Localized faulting of high-grade rocks accompanied by fluid infiltration can be an important mode of failure in the lower continental crust. Field relations show that granulite facies rocks can exist in a metastable state under eclogite facies conditions and imply that the lower crust can host differing metamorphic facies at the same depth. Deformation of granulite and partial conversion to eclogite, such as is exposed on Holsnøy Island, may be an orogenic-scale process in the lowermost crust of collisional orogens. 相似文献
9.
High-pressure metamorphism and deep-crustal seismicity: evidence from contemporaneous formation of pseudotachylytes and eclogite facies coronas 总被引:1,自引:0,他引:1
The metamorphic complex of the Western Gneiss Region (WGR), Norway, constitutes the root of the Caledonian mountain belt and experienced temperatures of 700–800 °C and pressures in excess of 20 kbar during peak metamorphism. Mafic bodies surrounded by strongly banded felsic gneisses commonly exhibit variable reequilibration to granulite and eclogite facies conditions and locally preserve igneous minerals and textures. The Kråkeneset gabbro, located on the island of Vågsøy in the mixed HP/UHP zone of the western WGR, display evidence for extensive metastability through the entire prograde and retrograde P, T histories. Eclogite constitutes less than a few percent of the total volume of the body and high-pressure assemblages typically form thin coronas around magmatic phases or occur along localized zones of brittle deformation and fluid infiltration. The gabbro displays pseudotachylyte vein networks that define subparallel brittle fault zones, <50 cm wide, transecting the gabbro body. The pseudotachylytes contain μm- to mm-scale amoeboid and dendrite-like textures of garnet and plagioclase with inclusions of the eclogite facies minerals orthopyroxene, omphacite, amphibole, and dolomite, suggesting rapid disequilibrium growth of minerals during high-pressure conditions. Textural and petrological evidence from pseudotachylytes and corona structures show that the growth of these unusual textures occurred shortly after pseudotachylyte crystallization by a process of rapid solid-state alteration of a microcrystalline pseudotachylyte matrix. The pseudotachylyte-lined fault zones are in close spatial association with numerous amphibole±carbonate-filled hydrofractures with conspicuous fracture-parallel alteration zones defined by hydrous eclogite facies assemblages. These eclogite facies hydrofractures testify to the existence of high fluid pressures and to fluid infiltration following brittle failure during high-grade metamorphic conditions. Geothermobarometric estimates (ca. T=650–700 °C, P=20 kbar) and petrological data imply that hydrofracturing, pseudotachylyte crystallization, and the subsequent pseudotachylyte alteration process must have occurred during high-pressure metamorphism. Our observations are suggestive of a deep-crustal earthquake scenario where a high-pressurized fluid phase plays a double role by causing both seismic failure through the embrittlement effect and facilitating eclogitization of the metastable anhydrous gabbro. Metamorphic reaction along hydrofractures and fault planes led to the development of eclogite facies foliation fabrics and illustrate the rheological change from brittle to plastic behavior associated with the gabbro to eclogite transition. The formation of weak deep-crustal shear zones following brittle failure represents an arrested initiation of the physical breakup and metamorphic reequilibration of the Kråkeneset gabbro during its residence deep in the former Caledonian collision zone. 相似文献
10.
Abstract The Hercynian granitic basement which forms the Tenda Massif in NE Corsica represents part of the leading edge of the European Plate during middle-to-late Cretaceous (Eoalpine) high P metamorphism. The metamorphism of this basement, induced by the overthrusting of a blueschist facies (schistes lustrés) nappe, was confined to a major ductile shear zone (c. 1000m thick) within which deformation increases upwards towards the overlying nappe. Metamorphism within the basement mostly records lower blueschist facies conditions (crossite + epidote) except near the base of the shear zone where the greenschist facies assemblage albite + actinolitic amphibole has developed instead of crossite. Study of the primary mafic phase breakdown reactions within hornblende granodiorite reveals the following metamorphic zonation. Zone 1: biotite to chlorite. Towards zone 2: biotite to phengite. Zone 2: Hornblende to actinolitic Ca-amphibole + albite + sphene, and biotite to actinolitic Ca-amphibole + albite + phengite + Ti-ore + epidote. Zone 3: Hornblende to crossite + low Ti-biotite + phengite + sphene, and biotite to crossite + low Ti-biotite + phengite + Ti-ore + sphene ± epidote. P-T conditions at the base of the shear zone are estimated to have been 390-490°C at 600-900 M Pa (6-9kbar) and the Corsican basement is therefore deduced to have been buried to 20-30 km during metamorphism. This relatively shallow metamorphism contrasts with some other areas in the Western Alps where the Eoalpine event apparently buried the European continental crust to depths of 80 km or more. As there is no evidence for a long history of blueschist facies metamorphism prior to the involvement of the European continent, it is deduced that the Eoalpine blueschists were produced during the collision of the Insubric plate with Europe, rather than during Tethyan intraoceanic subduction. Coherent blueschist terrains such as the schistes lustres probably record buovant feature collision and obduction tectonics rather than any preceding oceanic subduction. 相似文献
11.
The production of large volumes of fluid from metabasic rocks, particularly in greenstone terranes heated across the greenschist–amphibolite facies transition, is widely accepted yet poorly characterized. The presence of carbonate minerals in such rocks, commonly as a consequence of sea‐floor alteration, has a strong influence, via fluid‐rock buffering, on the mineral equilibria evolution and fluid composition. Mineral equilibria modelling of metabasic rocks in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐CO2‐H2O (NCaFMASCH) is used to constrain the stability of common metabasic assemblages. Calculated buffering paths on T–XCO2 pseudosections, illustrate the evolution of greenstone terranes during heating across the greenschist‐amphibolite transition. The calculated paths constrain the volume and the composition of fluid produced by devolatilization and buffering. The calculated amount and composition of fluid produced are shown to vary depending on P–T conditions, the proportion of carbonate minerals and the XCO2 of the rocks prior to prograde metamorphism. In rocks with an initially low proportion of carbonate minerals, the greenschist to amphibolite facies transition is the primary period of fluid production, producing fluid with a low XCO2. Rocks with greater initial proportions of carbonate minerals experience a second fluid production event at temperatures above the greenschist to amphibolite facies transition, producing a more CO2‐rich fluid (XCO2 = 0.2–0.3). Rocks may achieve these higher proportions of carbonate minerals either via more extensive seafloor alteration or via infiltration of fluids. Fluid produced via devolatilization of rocks at deeper crustal levels may infiltrate and react with overlying lower temperature rocks, resulting in external buffering of those rocks to higher XCO2 and proportions of carbonate minerals. Subsequent heating and devolatilization of these overlying rocks results in buffering paths that produce large proportions of fluid at XCO2 = 0.2–0.3. The production of fluid of this composition is of importance to models of gold transport in Archean greenstone gold deposits occurring within extensive fluid alteration haloes, as these haloes represent the influx of fluid of XCO2 = 0.2–0.3 into the upper crust. 相似文献
12.
Sonia Tonarini Igor M. Villa Felix Oberli Martin Meier David A. Spencer Ugo Pognante John G. Ramsay 《地学学报》1993,5(1):13-20
A geochronological investigation of two rocks with an eclogitic assemblage (omphacite-garnet-quartz-rutile) from the High Himalaya using the Sm/Nd, Rb/Sr, U/Pb and Ar/Ar methods is presented here. The first three methods outline a cooling history from the time of peak metamorphism at 49±6 Ma recorded by Sm/Nd in garnet-clinopyroxene to the closure of Rb/Sr in phengite at 43±1 Ma and U/Pb in rutile at 39–40 Ma. The Sm/Nd isotopic system was fully equilibrated during eclogitization and has not been disturbed since; its mineral ages may date the peak metamorphic conditions (650±50°C at 13–18 kbar: Pognante and Spencer, 1991). The Ar/Ar data reveal the presence of substantial amounts of excess 40Ar in hornblende, and yield a statistically acceptable but geologically meaningless phengite plateau age of 81.4±0.2 Ma, inconsistent with Sm/Nd, Rb/Sr and U/Pb. This questions the use of such a chronometer for the dating of high-pressure assemblages. The results imply a Late Palaeocene or Early Eocene subduction of the northern Indian plate margin in NW Himalaya. The fact that eclogites are restricted to NW Himalaya may be the result of a peculiar p-T-t path associated with a high convergence rate during the first indentation, in contrast to the later and slow subduction in Central and Eastern Himalaya. 相似文献
13.
Simultaneously in-situ analyses of U–Pb isotopes and trace elements were carried out for zircons, in combination with the in-situ analyses of trace elements in coexisting minerals, from low-T/UHP metagranite in the Dabie orogen. The results provide geochemical evidence for the existence of supercritical fluid during continental subduction-zone metamorphism. The zircons are categorized into three types based on their patterns of REE distribution. Type I zircons show increasing enrichment from La to Lu, with prominent positive Ce anomalies and negative Eu anomalies, which are typical of magmatic zircon. Some of them display regular or blurred oscillatory-zoned texture and apparent 206Pb/238U ages of 341 to 780 Ma, suggesting metamorphic modification by solid-state recrystallization with no significant involvement of metamorphic fluid. Type II zircons share similar Th, U and HFSE contents and REE patterns to Type I zircons. However, they exhibit blurred oscillatory-zoned texture or are unzoned, have apparent 206Pb/238U ages of 348 to 709 Ma, and are LREE-enriched relative to Type I zircons. This suggests that they underwent metamorphic reworking by replacement recrystallization in the presence of metamorphic fluid. The LREE enrichment is due to the presence of microscale LREE-bearing mineral inclusions (such as apatite, monazite or epidote) in the zircons. Type III zircons, representing the majority of the present analyses, are characterized by spongy texture and consistent enrichment of LREE, HREE, Th, U and HFSE relative to Type I zircons. They yield nearly concordant U–Pb ages close to the discordia lower-intercept. The consistent enrichment of trace elements relative to the magmatic zircon indicates involvement of a special UHP metamorphic fluid that has a strong capacity to extract significant amounts of LREE, HREE, Th, U and HFSE from such accessory minerals as allanite, garnet, rutile and zircon. Because these minerals are stable in the field of hydrous melt in granite–water systems, they are not able to be decomposed during the exhumation of deeply subducted continental crust. Thus, a supercritical fluid is suggested to transport the LREE, HREE, Th, U and HFSE in the accessory minerals to recrystallized zircons. The mechanism of dissolution recrystallization is responsible for the spongy texture and the very high concentration of trace elements in this type of metamorphic zircons. Therefore, the action of supercritical fluid is evident under the low-T/UHP metamorphic conditions. 相似文献
14.
Pyrite in LT–HP eclogites from the western Tianshan orogenic belt yields a Re‐Os age of 378.1 ± 8.9 Ma, which is 30–70 Ma older than ages previously obtained for the same rocks using the Rb–Sr, Sm–Nd, Ar–Ar, U–Pb, and Lu–Hf isotope systems. The Tianshan LT–HP eclogite experienced temperatures of up to ~570 °C combined with pressures of up to 2.1 GPa during metamorphism. These conditions are below the transition of pyrite to pyrrhotite, which defines both pyrite stability and possibly its closure temperature for Re‐Os. Pyrite can preserve Re‐Os signatures through eclogite facies peak metamorphic conditions, and thus allow determination of the formation age of pyrite in the protolith. 相似文献
15.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A P–T path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism. 相似文献
16.
The blueschist and greenschist units on the island of Sifnos, Cyclades were affected by Eocene high‐pressure (HP) metamorphism. Using conventional geothermobarometry, the HP peak metamorphic stage was determined at 550–600 °C and 20 kbar, close to the blueschist and the eclogite facies transition. The retrograde P–T paths are inferred with phase diagrams. Pseudosections based on a quantitative petrogenetic grid in the model system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O reveal coeval decompression and cooling for both the blueschist and the greenschist unit. The conditions of the metamorphic peak and those of the retrograde stages conform to a similar metamorphic gradient of 10–12 °C km?1 for both units. The retrograde overprint can be assigned to low‐pressure blueschist to HP greenschist facies conditions. This result cannot be reconciled with the (prograde) Barrovian‐type event, which affected parts of the Cyclades during the Oligocene to Miocene. Instead, the retrograde overprint is interpreted in terms of exhumation, directly after the HP stage, without a separate metamorphic event. Constraints on the exhumation mechanism are given by decompression‐cooling paths, which can be explained by exhumation in a fore‐arc setting during on‐going subduction and associated crustal shortening. Back‐arc extension is only responsible for the final stage of exhumation of the HP units. 相似文献
17.
A. J. Bons M. R. Drury D. Schryvers H. J. Zwart 《Physics and Chemistry of Minerals》1990,17(5):402-408
The structure of grain boundaries in some very low-grade slates has been studied with transmission electron microscopy. All phyllosilicate boundaries have structural widths of less than 1 nm. A range of structural types have been observed from apparently coherent basal layer chlorite-muscovite boundaries, semi-coherent chlorite-chlorite boundaries and incoherent boundaries which are commonly defined by a thin layer, 7–10 nm thick, of crystalline second phase. Remnants of isolated fluid inclusions are only found at quartz-quartz boundaries. The cleavage microstructures suggest that a large amount of volume loss occurred during cleavage development at low temperatures. This is most likely to have been achieved by diffusion and/or advection through a fluid-filled network present along grain boundaries or grain edges. The phyllosilicate grain boundaries in their present state could not have acted as the pathways for extensive fluid-assisted mass transport. This suggests that the grain boundary structure during cleavage formation was different from the present state. An interconnected fluid network may be maintained along grain boundaries during deformation by hydrofracturing or by grain boundary migration during dehydration reactions, but as deformation and reactions cease the grain boundaries develop an equilibrium structure with very narrow structural widths and restricted fluid distribution. 相似文献
18.
M. BRÖCKER R. KLEMD M. COSCA W. BROCK A. N. LARIONOV N. RODIONOV 《Journal of Metamorphic Geology》2009,27(5):385-403
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ). 相似文献
19.
Franziska D.H. Wilke Patrick J. O'Brien Uwe Altenberger Matthias Konrad-Schmolke M. Ahmed Khan 《Lithos》2010,114(1-2):70-85
Metabasites were sampled from rock series of the subducted margin of the Indian Plate, the so-called Higher Himalayan Crystalline, in the Upper Kaghan Valley, Pakistan. These vary from corona dolerites, cropping out around Saif-ul-Muluk in the south, to coesite–eclogite close to the suture zone against rocks of the Kohistan arc in the north. Bulk rock major- and trace- element chemistry reveals essentially a single protolith as the source for five different eclogite types, which differ in fabric, modal mineralogy as well as in mineral chemistry. The study of newly-collected samples reveals coesite (confirmed by in situ Raman spectroscopy) in both garnet and omphacite. All eclogites show growth of amphiboles during exhumation. Within some coesite-bearing eclogites the presence of glaucophane cores to barroisite is noted whereas in most samples porphyroblastic sodic–calcic amphiboles are rimmed by more aluminous calcic amphibole (pargasite, tschermakite, and edenite). Eclogite facies rutile is replaced by ilmenite which itself is commonly surrounded by titanite. In addition, some eclogite bodies show leucocratic segregations containing phengite, quartz, zoisite and/or kyanite. The important implication is that the complex exhumation path shows stages of initial cooling during decompression (formation of glaucophane) followed by reheating: a very similar situation to that reported for the coesite-bearing eclogite series of the Tso Morari massif, India, 450 km to the south-east. 相似文献
20.
A model for the pathway of some trace elements during fluidized-bed combustion of israeli oil shale is suggested, based both
on pilot plant and laboratory tests. This model demonstrates the role of carbonate matrix in suppressing the volatilization
of trace elements due to fixation of most elements in new-formed silicates. The quality of leachates derived from oil shale
combustion wastes can be predicted on the basis of the proposed model. 相似文献