首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we analyse the positions of major flares from 1978 and 1979, with respect to the magnetic structure of the solar corona, as described by a potential field model. We find that major flares exhibit no strong association with the neutral line at the chromospheric level. However, when we calculate the neutral line's position at higher and higher altitudes in the corona, we find that major flares show an increasing tendency to be found close to these high-altitude coronal neutral lines. The correlation between flares and higher-altitude coronal neutral lines reaches a maximum at an altitude of 0.35R , and thereafter decreases as the neutral line is moved out to the source surface at an altitude of 1.50R . This indicates that major flares are strongly associated with coronal structure at the 0.35R level ( 250 000 km) - an altitude surprisingly high in the corona. This reinforces the idea that flares are associated with large-scale coronal magnetic fields and also indicates that the region of coronal magnetic topology important to solar flare processes may be larger than previously thought.  相似文献   

2.
Lewis  D.J.  Simnett  G.M.  Brueckner  G.E.  Howard  R.A.  Lamy  P.L.  Schwenn  R. 《Solar physics》1999,184(2):297-315
The near-rigid rotation of the corona above the differential rotation of the photosphere has important implications for the form of the global coronal magnetic field. The magnetic reconfiguring associated with the shear region where the rigidly-rotating coronal field lines interface with the differentially-rotating photospheric field lines could provide an important energy source for coronal heating. We present data on coronal rotation as a function of altitude provided by the Large Angle Spectrometric Coronagraph (LASCO) instrument aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. LASCO comprises of three coronagraphs (C1, C2, and C3) with nested fields-of-view spanning 1.1 R to 30 R. An asymmetry in brightness, both of the Fexiv emission line corona and of the broad-band electron scattered corona, has been observed to be stable over at least a one-year period spanning May 1996 to May 1997. This feature has presented a tracer for the coronal rotation and allowed period estimates to be made to beyond 15R, up to 5 times further than previously recorded for the white-light corona. The difficulty in determining the extent of differential motion in the outer corona is demonstrated and latitudinally averaged rates formed and determined as a function of distance from the Sun. The altitude extent of the low latitude closed coronal field region is inferred from the determined rotation periods which is important to the ability of the solar atmosphere to retain energetic particles. For the inner green line corona (<2 R) we determine a synodic rotation period of (27.4±0.1) days, whereas, for the outer white- light corona, (>2.5 R) we determine a rotation period of (27.7±0.1) days.  相似文献   

3.
Egil Leer 《Solar physics》1974,35(2):467-480
A one-fluid model of the solar atmosphere is considered. The corona is heated by waves propagating out from the Sun, and profiles for temperature, flow speed and number density are obtained. For a relatively quiet Sun the inwards heat flux in the inner corona is constant in T 5–6 × 105 K and the temperature maximum is reached for r — R = 0.4 — 0.5 R where R is the solar radius. The number density in the inner corona decreases with an increasing particle flux.  相似文献   

4.
The Large Angle Spectroscopic Coronagraph (LASCO)   总被引:12,自引:0,他引:12  
The Large Angle Spectroscopic Coronagraph (LASCO) is a three coronagraph package which has been jointly developed for the Solar and Heliospheric Observatory (SOHO) mission by the Naval Research Laboratory (USA), the Laboratoire d'Astronomie Spatiale (France), the Max-Planck-Institut für Aeronomie (Germany), and the University of Birmingham (UK). LASCO comprises three coronagraphs, C1, C2, and C3, that together image the solar corona from 1.1 to 30 R (C1: 1.1 – 3 R, C2: 1.5 – 6 R, and C3: 3.7 – 30 R). The C1 coronagraph is a newly developed mirror version of the classic internally-occulted Lyot coronagraph, while the C2 and C3 coronagraphs are externally occulted instruments. High-resolution imaging spectroscopy of the corona from 1.1 to 3 R can be performed with the Fabry-Perot interferometer in C1. High-volume memories and a high-speed microprocessor enable extensive on-board image processing. Image compression by a factor of about 10 will result in the transmission of 10 full images per hour.  相似文献   

5.
We observed Faraday rotation of linearly polarized radio waves from the Crab Nebula (Tau A) at 4170 MHz during solar coronal occultations in June 1971–75. Mean amplitudes of the variations of position angle are larger in an active phase of the solar cycle than in a quiet phase. In occultations in 1971 and 1973, the position angle of the polarization varied oscillatory by 20–50 degrees due to local magnetic structures in the corona with a typical scale-length of about 0.5 R . In 1974, we observed a typical variation of position angle of polarization which is expected from a Y-shaped field configuration in coronal streamers.The Faraday rotation is enhanced when the line of sight to Tau A passes through strong coronal magnetic fields computed from magnetograph observations, while the rotation is suppressed when the line of sight passes through large coronal holes observed in X-rays. Short-time oscillation of the rotation angle observed in 1971 and 1973 suggests that neutral sheets in coronal streamers oscillate at a period of 3 hours with an amplitude of 1 R at a distance of 10 R from the Sun.  相似文献   

6.
The radial brightness distribution of the quiet Sun at 8.6 mm is synthesized from observations using a sixteen element east-west interferometer in Nagoya. The observed brightness is flat from the disk center to 0.8R . A slight darkening appeared between 0.8R and the limb. No evidence of the bright ring near the limb is found. The radio radius at 8.6 mm is 1.015±0.005R . In addition there exists a coronal component just outside the radio limb.  相似文献   

7.
Banerjee  D.  Teriaca  L.  Doyle  J.G.  Lemaire  P. 《Solar physics》2000,194(1):43-58
We present observations of Ovi 1032 Å line profiles obtained with the SUMER instrument on SOHO extending from the solar disk to 1.5 R above the limb in the north polar coronal hole. Variations of the intensity and linewidth in the polar plume and inter-plume regions are investigated. We find an anti-correlation between the intensity and the linewidth in the plume and inter-plume regions with detailed plume structures been seen out to 1.5 R . Possible implications regarding the magnetic topologies of these two regions and related heating mechanisms are discussed. The Ovi linewidth measurements are combined with UVCS output to provide an overview of its variations with height extending up to 3.5 R . We find a linear increase of the linewidth from 1 to 1.2 R , then a plateau followed by a sharp increase around 1.5 R .  相似文献   

8.
Two-dimensional isophotes of the extreme solar corona (r max 45 R ) have been derived from integrated vidicon pictures taken from the Moon's surface by the unmanned probes Surveyors 6 and 7. These data were calibrated through use of previously published values for the coronal brightness gradient along the ecliptic. The resulting structure of the outer corona is compared to ground-based observations of the innermost corona 1.125 r/R 2.0 made by the High Altitude Observatory K-coronameter. The possible existence of a streamer seen by Surveyor 7 is analyzed over the region 15 r 22.5 R .  相似文献   

9.
We present observations of the corona at 169 MHz with the Nançay Radioheliograph during the summer of 1984. We compare synoptic maps of the metric radio emission on the solar disk with synoptic charts of the K-corona as well as of the green and the red lines. Local sources of radio emission are not located near regions of enhanced green or red line emission which, in turn, are in general above chromospheric faculae. Thus the radio emissions located in the surroundings of faculae are apparently related to different loop systems, with lower density. The comparison of the radio data with the K-corona showed one radio source associated with enhanced emission both at 1.3 and at 1.7 R , apparently a streamer. Other radio sources did not show any clear associations, but were nevertheless located within the coronal plasma sheet, delineated by the large-scale K-corona emission. Moreover the large-scale structure of the corona at 169 MHz was quite similar to the coronal plasma sheet observed at 1.3 R above the limb. The extent of the radio emission in latitude is very similar to that of the K-corona, while the coronal line emission is more concentrated near the solar equator.  相似文献   

10.
The brightness distribution of the quiet Sun at 8.6 mm wavelength is synthesized from off-meridian observations using an eight element east-west interferometer with a maximum base line of 16.38 m (1913). The observed brightness distribution is practically flat from the disk center to the optical limb. The effective radius of the nearly uniform component is 1.01 R . If the limb brightening is present, the brightening located between 0.95 R and 1.01 R , and the total flux density of the limb brightening is less than 1% of the total flux density of the Sun. In addition to the nearly uniform component there exists a coronal component just outside the optical limb.  相似文献   

11.
Type III solar radio bursts observed from 3.0 to 0.45 MHz with the ATS-II satellite over the period April–October 1967 have been analyzed to derive two alternative models of active region streamers in the outer solar corona. Assuming that the bursts correspond to radiation near the electron plasma frequency, pressure equilibrium arguments lead to streamer Model I in which the streamer electron temperature derived from collision damping time falls off much more rapidly than in the average corona and the electron density is as much as 25 times the average coronal density at heights of 10 to 50 solar radii (R ). In Model II the streamer electron temperature is assumed to equal the average coronal temperature, giving a density enhancement which decreases from a factor of 10 close to the Sun to less than a factor of two at large distances (> 1/4 AU). When the burst frequency drift is interpreted as resulting from the outward motion of a disturbance that stimulates the radio emission, Model I gives a constant velocity of about 0.35c for the exciting disturbance as it moves to large distances, while with Model II, there is a decrease in the velocity to less than 0.2c beyond 10 R .  相似文献   

12.
Tu  C.-Y.  Marsch  E. 《Solar physics》1997,171(2):363-391
A model of the solar corona and wind is developed which includes for the first time the heating and acceleration effects of high-frequency Alfvén waves in the frequency range between 1 Hz and 1 kHz. The waves are assumed to be generated by the small-scale magnetic activity in the chromospheric network. The wave dissipation near the gyro-frequency, which decreases with increasing solar distance, leads to strong coronal heating. The resulting heating function is different from other artificial heating functions used in previous model calculations. The associated thermal pressure-gradient force and wave pressure-gradient force together can accelerate the wind to high velocities, such as those observed by Helios and Ulysses. Classical Coulomb heat conduction is also considered and turns out to play a role in shaping the temperature profiles of the heated protons. The time-dependent two-fluid (electrons and protons) model equations and the time-dependent wave-spectrum equation are numerically integrated versus solar distance out to about 0.3 AU. The solutions finally converge and settle on time-stationary profiles which are discussed in detail. The model computations can be made to fit the observed density profiles of a polar coronal hole and polar plume with the sonic point occurring at 2.4 R and 3.2 R , respectively. The solar wind speeds obtained at 63 R are 740 km s-1 and 540 km s-1; the mass flux is 2.1 and 2.2 × 108 cm-2 s-1 (normalized to 1 AU), respectively. The proton temperature increases from a value of 4 × 105 K at the lower boundary to 2 × 106 K in the corona near 2 R .  相似文献   

13.
Observations are presented of emission line resonance polarization in Fe xiii 10747 at the total solar eclipse of 12 November 1966. Useful data, with angular resolution 15, describe three quadrants of the corona from 1.08 R to a maximum of 1.6 R . The direction of the electric vector of observed polarization is perpendicular to the solar limb, to the limits of accuracy of measurement, in at least 74% of all cases. Departures in the other points are consistent with the magnetic depolarization expected from the non-radial fields of streamers. Polarizations observed range from near zero at the limb to 80 % and higher at 1.6 R . Averaged polarization is highest in non-streamer regions, where above 1.2 R it suggests pure radiative excitation of the 10747 line. Below 1.2 R , and in a dense streamer, the polarization is significantly depressed, indicating dominant collisional excitation of the line wherever the electron density exceeds 50 × 106 cm–3.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

15.
A. C. Riddle 《Solar physics》1970,13(2):448-457
The 80 MHz emission from a moving type IV source has been observed as the source moved from 2 to 51/4 R from the centre of the Sun. The emission came from a plasma cloud ejected in association with an extensive solar prominence. The cloud appeared to move with a speed ( 270 km/sec) approximating the local Alfvén velocity in the corona. At 2 R the emission was from a single unpolarized source, while at 5 R it was from two sources strongly circularly polarized in opposite senses. The physical conditions inside and outside the source and the emission mechanisms are discussed.  相似文献   

16.
The solar disk locations of 13 coronal streamers were determined from a combination of eclipse, K-coronameter (1 1/8r1 1/2 R ), and balloon-borne coronagraph (2<r<6 R ) observations taken during 1964 and 1965. Of this sample, three were observed twice on photographs taken over intervals of four and 28 days. Most of these streamers could be structurally associated with K-coronameter enhancements to establish their disk locations.Those features having known disk locations all lay above some stage of chromospheric disk activity in the form of active regions and prominences. The average lifetime of three K-coronameter streamer-enhancements, for which all or nearly all of their lifetimes were known, was about 4 solar rotations. Rotation rates for the lower latitude streamer-enhancements (30°) were essentially identical to the underlying surface. One high latitude feature ( 50°) which overlay a quiescent prominence had a rate equivalent to the surface rate at 30° latitude. In general those K-coronameter enhancements associated with streamers came into existence over time periods of 14 days and disappeared by gradually blending into the background coronal pattern. All the observed structures are explained by a model consisting of localized, high density features (streamers) which overlie disk activity and are imbedded in a uniform but weaker azimuthally-symmetric quiet corona.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
C. F. Keller 《Solar physics》1971,21(2):425-429
White-light photographs of the solar corona were taken during the March 1970 eclipse from an Air Force NC-135 jet aircraft at an altitude of 36 380 ft. Four photographs each were made for several exposure times varying from 0.1 to 10.0 s. Three each were made with plane polaroid filters whose orientation was varied at 60° intervals. Stabilization of the camera was approximately 10 even during the longest exposures. The corona was recorded to distances beyond 12 R .A preliminary study of per cent polarization as a function of position with respect to the solar disk for a set of 1.0 s exposures shows an inversion in per cent polarization in the region 6 to 8 R -polarization decreasing outward to the region and increasing again beyond it. This inversion is most apparent along the major streamers.Intensities traced outward from the Sun in both polar and equatorial directions are compared with previous observations.Work done under the auspices of the U.S. Atomic Energy Commission.  相似文献   

18.
Jagdev Singh 《Solar physics》1985,95(2):253-262
The line and continuum intensities deduced from the multislit spectra of the (Fe X) coronal emission line taken at the 1980 eclipse are used to discuss the relative roles of radiative and collisional excitation mechanisms. It is shown that for R/R < 1.2, collisional excitation is the predominant mode. Collisional as well as radiative excitation is equally important for 1.2 < R/R < 1.4, whereas beyond 1.4 R radiative excitation becomes dominant. The line width measurements indicate that a large number of locations have half-widths around 1.3 Å. The maximum half-width is reached at 1.4 R with an average value of 1.6 Å.  相似文献   

19.
Emission gradient curves for extreme ultraviolet (EUV) resonance lines of O vi and Mg x have been constructed from spectroheliograms of quiet limb regions observed with the Harvard experiment on Skylab. An analysis of these data suggests that the coronal temperature rises throughout the height range 1.03R r1.3R . This result implies that in quiet regions there is significant coronal heating beyond r = 1.3R .Now at E.O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., U.S.A.  相似文献   

20.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号