首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, andFundulus heteroclitus isotope values (δ13C, δ15N, δ34S) were examined to assess their use as indicators for changes in food web support functions in tidally-restored salt marshes. Study sites, located throughout the southern New England region (USA), ranged fromSpartina alterniflora-dominated reference marshes, marshes under various regimes and histories of tide restoration, and a severely tide-restrictedPhragmites australis marsh.Fundulus δ13C values were greater for fish from referenceSpartina marshes than for fish from adjacent tide-restricted or tide-restored marshes where higher percent cover of C3 plants, lower water column salinities, and more negative dissolved inorganic δ13C values were observed. The difference inFundulus δ13C values between a tide-restrictedPhragmites marsh and an adjacent referenceSpartina marsh was great compared to the difference between marshes at various stages of tide restoration and their respective reference marshes, suggesting that food web support functions are restored as the degree of tidal restriction is lessened. While a multiple isotopic approach can provide valuable information for determining specific food sources to consumers, this study demonstrates that monitoringFundulus δ13C values alone may be useful to evaluate the trajectory of ecological change for marshes undergoing tidal restoration.  相似文献   

2.
The invasion ofSpartina marshes by the common reed,Phragmites australis, along the east coast of the United States over the last several decades has been well documented, although we know little about the impact of this invasion on the fish fauna and the few published papers seem contradictory. During 1999–2000 (May–September) we evaluated the fish response to vegetation type (Phragmites australis veersusSpartina alterniflora) by monitoring several aspects of fish early life history (egg deposition, embryonic development, hatching success, and larval and juvenile abundance) in low salinity marshes in the Mullica River in southern New Jersey. The dominant fish species using the marsh surface,Fundulus heteroclitus (93% of total catch, n=996 individuals), reproduced in both vegetation types with eggs deposited in leaf axils near the base of the plant inSpartina and in broken stems ofPhragmites during both years. These eggs also undergo successful embryonic development to hatching in both vegetation types. Larval and juvenile (5–75 mm total length, but 95% < 34 mm TL) abundance of this species is much reduced onPhragmites-dominated (mean CUPE=0.02, n=7 ind) marsh surface relative toSpartina (mean CPUE=2.31). These findings, and similar results for fish abundance in 1997 and 1998, indicate that theSpartima marsh surface is likely essential fish habitat for this species because it provides habitat for larvae and small juveniles, whilePhragmites does not. ThePhragmites invasion in brackish marshes may be having deleterious effects on fish populations and possibly on predators that prey uponF. heteroclitus, and as a result, marsh secondary production.  相似文献   

3.
Phragmites expansion rates (linear at 1–3% yr−1) and impacts of this expansion on high marsh macroinvertebrates, aboveground production, and litter decomposition fromPhragmites and other marsh graminoids were studied along a polyhaline to oligohaline gradient. These parameters, and fish use of creeks and high marsh, were also studied inPhragmites control sites (herbicide, mowing, and combined herbicide/mow treatments).Phragmites clones established without obvious site preferences on oligohaline marshes, expanding radially. At higher salinities,Phragmites preferentially colonized creekbank levees and disturbed upland borders, then expanded into the central marsh. Hydroperiods, but not salinities or water table, distinguishedPhragmites-dominated transects. Pooled samples ofPhragmites leaves, stems, and flowers decompose more slowly than other marsh angiosperms;Phragmites leaves alone decompose as or more rapidly than those of cattail. AbovegroundPhragmites production was 1,300 to 2,400 g m−2 (about 23% of this as leaves), versus 600–800 g m−2 for polyhaline to mesohaline meadow and 1,300 g m−2 for oligohaline cattail-sedge marsh. Macroinvertebrates appear largely unaffected byPhragmites expansion or control efforts; distribution and densities are unrelated to elevation or hydroperiod, but densities are positively related to litter cover. Dominant fish captured leaving flooded marsh wereFundulus heteroclitus andAnguilla rostrata; both preyed heavily on marsh macroinvertebrates.A. rostrata andMorone americana tended to be more common inPhragmites, but otherwise there were no major differences in use patterns betweenPhragmites and brackish meadow vegetation. SAV and macroalgal cover were markedly lower within aPhragmites-dominated creek versus one withSpartina-dominated banks. The same fish species assemblage was trapped in both plus a third within the herbicide/mow treatment. Fish biomass was greatest from theSpartina creek and lowest from thePhragmites creek, reflecting abundances ofF. heteroclitus. Mowing depressedPhragmites aboveground production and increased stem density, but was ineffective for control.Phragmites, Spartina patens, andJuncus gerardii frequencies after herbicide-only treatment were 0.53-0.21; total live cover was <8% with a heavy litter and dense standing dead stems. After two growing seasonsAgrostis stolonifera/S. patens/J. gerardii brackish meadow characterized most of the herbicide/mow treatment area;Phragmites frequency here was 0.53, contributing 3% cover. Both values more than doubled after four years; a single treatment is ineffective for long-termPhragmites control.  相似文献   

4.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

5.
In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.  相似文献   

6.
The tidally inundated marsh surface is an importnat site for energy exchanges for many resident and transient species. In many areas along the East Coast of the U.S. the dominant vegetation,Spartina alterniflora, has been replaced by the common reed (Phragmites australis). This shift has caused concern about the impact ofPhragmites on marsh fauna but research in this area has been limited. During 1997 and 1998, we examined the effect ofPhragmites on fish and decapod crustacean use of the marsh surface in the brackish water reaches of the Mullica River, in southern New Jersey, U.S. Fish and decapod crustaceans were sampled with an array of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm) and with flumes (1.3 m wide×10 m long of 3.2-mm mesh). Fish (2–60 mm TL) dominated pit trap collections withFundulus heteroclitus andFundulus luciae significantly more abundant atSpartina sites.Fundulus heteroclitus was also the dominant fish (15–275 mm TL) collected in flumes but collections with this gear, including a number of species not collected in pit traps, showed no distinct preferences for different marsh vegetation types. Decapod crustaceans (1–48 mm CW) collected in pit traps were generally less abundant than fishes withCallinectes sapidus andPalaemonetes spp. most abundant inSpartina, whileRhithropanopeus harrisii was most abundant inPhragmites. The same decapod crustacean species (2–186 mm CW) dominanted the flume collections and, similar to the pattern of fish collected by the flumes, there were no distinct habitat preferences for different marsh vegetation types. As a result of these observations, with different sampling techniques, it appears there is an overall negative effect ofPhragmites on larval and small juvenile fish but less or no effect on larger fish and decapods crustaceans.  相似文献   

7.
Modification of brackish marshes by nonindigenousPhragmites australis has occurred across a broad geographical area in eastern North America. Among its effects on marsh processes,Phragmites may be increasingly unfavorable to marsh surface fishes as its invasion progresses within an estuary. We assessed the effect of thePhragmites invasion on resident marsh surface fishes by examining the population response ofFundulus heteroclitus (mummichog, 5–48 mm TL) andF. luciae (spotfin killifish, 5–41 mm TL) to four distinct invasion stages in three estuaries of the U.S. mid Atlantic region (New Jersey, Delaware, and Maryland). We documented precipitous declines in mean catch per unit effort ofF. heteroclitus in pit traps from natural marsh (51.6), through initial (33.8), early (12.3), and late invasion stages (2.4) across all sites. A similar pattern was documented forF. luciae, with mean catch per unit effort in pit traps declining from natural marsh (48.9), through initial (39.1), early (9.3), and late invasion stages (2.7). Population structure of both species also changed somewhat across invasion stages such that we collected a narrower size range of individuals of both species from late invasion stages. Patterns suggest that as thePhragmites invasion progresses, there is a decline in habitat function for larval and juvenileF. heteroclitus and an increased risk of extirpation ofF. luciae from brackish marshes along the east coast of the U.S.  相似文献   

8.
Much effort has been directed recently at restoring marshes, by the removal of the invasive common reed,Phragmites australis, yet it is not clear how fish and invertebrates have responded either to the invasion ofPhragmites or to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs toPhragmites invasion and restoration efforts by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molting of crabs in three physically similar areas differing in marsh vegetation;Spartina-dominated,Phragmites-dominated, and a treated area (Phragmites removed and now dominated bySpartina) in one marsh in the upper portion of Delaware Bay. Field sampling occurred monthly (April to November) from 1999 to 2001 using replicate daytime otter trawls in large marsh creeks. Crabs were categorized by carapace width into recruits (<30 mm), juveniles (30–115 mm), and adults (>115 mm). Juveniles dominated the system, representing 69.4% of all crabs. Similar monthly increases in mean size and molting patterns during the growing season (May–August) occurred inSpartina (natural and treated sites) andPhragmites sites suggesting that, subtidal habitats, used for molting, in these areas do not differ. More juveniles in the feeding molt stage (i.e., intermolt) than in other molt stages and more recruits predominantly in the feeding molt stage than adults were inSpartina, suggesting differences in the marsh surfaces used as feeding habitats withSpartina being preferred. Sex ratios of each life history stage were skewed towards males, but this was related to the low salinity of Alloway Creek, rather than marsh surface vegetation. Our results suggest that marsh surface vegetation influences the way blue crabs use marsh surface habitats, thus restoration efforts focusing on changing vegetation type may have a positive influence on blue crabs.  相似文献   

9.
The stable isotope signatures of marine transient and resident nekton were used to investigate trophic linkages between primary producers, marsh macrophytes, phytoplankton, benthic microalgae, and consumers within the Delaware Bay. A whole estuary approach was used to compare the flux of nutrients from primary producers to juvenile weakfish (Cynoscion regalis), bay anchovy (Anchoa mitchilli), and white perch (Morone americana) in open waters of the lower and upper Bay and adjacent salt marshes dominated by eitherSpartina alterniflora orPhragmites australis. Our results suggest that trophic linkages vary significantly along the salinity gradient, reflecting the transition fromSpartina toPhragmites-dominated marshes, and secondarily, in a marsh to open water (offshore) direction at a given salinity. Superimposed on this pattern was a gradient in the proximate use of organic matter that depended on life history traits of each species ranging from pelagic to benthic in the order bay anchovy > weakfish > white perch.  相似文献   

10.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

11.
A tier III, essential fish habitat analysis was used to evaluate the biochemical condition of common mummichog Fundulus heteroclitus residing in two isolated tidal salt marshes, one a relatively undisturbed polyhaline site dominated by Spartina alterniflora and the other a meso-oligohaline site dominated by an invasive variety of Phragmites australis. Stable isotopes signatures of C, N, and S in whole tissue samples of F. heteroclitus were used to compare the trophic spectrum for this species in each marsh as a function of the dominant macrophytes present with additional contributions from phytoplankton and benthic microalgae. Allometry of wet mass and its components, water mass, lean protein mass and lipid mass in individual fish exhibited hyperallometric patterns; and average lipid mass fell within the range reported for most fundulids, including F. heteroclitus. Significant differences were also detected in the allocation of lipid classes to energy reserves in the form of triacylglycerols (TAG) and free fatty acids. These reserves, especially TAG, are critical for reproduction, migration, and overwintering survival in many taxa and were significantly lower in fish collected in the P. australis-dominated marsh. Relative to the relatively undisturbed Spartina-dominated site, we tentatively conclude that the P. australis-invaded marsh was an inferior habitat for F. heteroclitus.  相似文献   

12.
Killifish are ecologically important components of salt marsh ecosystems, but no studies have determined the importance of locally produced versus allochthonous food sources on a scale of less than multiple kilometers. The goal of our study was to examine diet and movement of the killifish,Fundulus heteroclitus, collected from a Maine salt marsh to assess the importance of locally produced versus allochthonous food sources on a scale of several hundred meters. We compared the gut contents and stable isotope signatures ofF. heteroclitus from four regions along the central river of a Maine salt marsh to the distinct food sources and isotopic signatures of the region of the marsh in which they were caught.F. heteroclitus were relying on locally produced food sources even on the scale of several hundred meters. They fed daily in a small area less than 6 ha and maintained relatively strong site fidelities over the course of several months. Phytoplankton and salt marsh detritus both contributed to the high production ofF. heteroclitus; terrestrial plant detritus was not an important component of their diet. The diet and feeding patterns ofF. heteroclitus from this small Maine salt marsh were similar to the patterns found in much larger salt marshes, suggesting that locally produced organic matter is essential to the production of these ecologically important fish.  相似文献   

13.
Much of North America’s tidal marsh habitat has been significantly altered by both natural and man-made processes. Thus, there is a need to understand the trophic ecology of organisms endemic to these ecosystems. We applied carbon (δ 13C) and nitrogen (δ 15N) stable isotope analysis, along with isotope mixing models, to egg yolk, liver, and muscle tissues of clapper rails (Rallus longirostris) and their likely prey items. This analysis enabled us to explore variation in trophic niche and diet composition in this important marsh bird in two northern Gulf of Mexico tidal marshes that are river and ocean-dominated. For the river-associated estuary, δ 13C and δ 15N of egg yolks, liver, and pectoral muscle tissue samples provided evidence that clapper rails maintained a similar diet during both the winter and the breeding season. A trophic link between C3 primary productivity and the clapper rail’s diet was also indicated as the δ 13C of clapper rail egg yolks related negatively with the aerial cover of C3 macrophytes. Clapper rails from the ocean-dominated estuary had a narrower trophic niche and appeared to be utilizing marine resources, particularly, based on modeling of liver stable isotope values. Variation in stable isotope values between egg yolk and liver/muscle in both systems suggests that endogenous resources are important for egg production in clapper rails. These results demonstrate that diet composition, prey source, and niche width of clapper rails can vary significantly across different estuaries and appear to be influenced by hydrological conditions.  相似文献   

14.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

15.
Alteration of estuarine shorelines associated with increased urbanization can significantly impact biota and food webs. This study determined the impact of shoreline alteration on growth and movement of the estuarine fish Fundulus heteroclitus in a tributary of the Delaware Coastal Bays. Fundulus heteroclitus is abundant along the east coast of the USA, and is an important trophic link between marsh and subtidal estuary. The restricted home range of F. heteroclitus allowed discrete sampling, and fish growth comparisons, along 35–65-m long stretches of fringing Spartina alterniflora and Phragmites australis marsh, riprap, and bulkhead. Fundulus heteroclitus were tagged with decimal Coded Wire Tags. Of 725 tagged F. heteroclitus, 89 were recaptured 30–63 days later. Mean growth rate (0.06–0.15 mm day?1 across all shoreline types) was greatest at riprap, lowest at Spartina and Phragmites, and intermediate at bulkhead, where growth was not significantly different from any other shoreline. This suggests that discernible environments exist along different shoreline types, even at the scale of tens of meters. No difference in movement distance was detected at different shoreline types; most individuals displayed a high degree of site fidelity. Forty-seven percent were recaptured within 5 m of their tagging location, although alongshore movements up to 475 m were recorded. Estimates of relative F. heteroclitus productivity, using relative density data from a concurrent study, were highest along Spartina and Phragmites, intermediate at riprap, and lowest at bulkhead. Therefore, despite greater growth rates along riprap than at vegetated shores, armoring reduces abundance sufficiently to negatively impact localized productivity of F. heteroclitus.  相似文献   

16.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

17.
Spartina alterniflora salt marshes along the southeastern United States are some of the most productive and well studied ecosystems in the world. The role of physicochemical forces in regulatingSpartina growth is well understood, while the importance of grazers remains less clear. Recent studies have shown that the abundant marsh periwinkle,Littoraria irrorata, can exert strong control overSpartina through its grazing activities, but relatively little is known about its relative effects in comparison to other marsh plant consumers. To test the relative importance of snail and insect consumers onSpartina biomass, we conducted a 7-mo field experiment testing top-down regulation ofSpartina with all combinations ofL. irrorata (removed, control, c. 215 periwinkles m−2) andSpartina planthopper,Prokelisia marginata (removed, control). Snail removal resulted in a 50% increase inSpartina biomass while removal of planthoppers had no detectable effect. Planthopper density also increased by 50% when snails were excluded. In this South Carolina marsh,L. irrorata exerts a stronger top-down control ofSpartina thanP. marginata. These results indicate trophic cascade regulation ofSpartina salt marsh is more likely to occur through the predator(s)-Littoraria-plant interaction than through the predator(s)-Prokelisia-plant relationship.  相似文献   

18.
This study sought to examine ecological equivalence of created marshes of different ages using traditional structural measures of equivalence, and tested a relatively novel approach using stable isotopes as a measure of functional equivalence. We compared soil properties, vegetation, nekton communities, and δ 13C and δ 15N isotope values of blue crab muscle and hepatopancreas tissue and primary producers at created (5–24 years old) and paired reference marshes in SW Louisiana. Paired contrasts indicated that created and reference marshes supported equivalent plant and nekton communities, but differed in soil characteristics. Stable isotope indicators examining blue crab food web support found that the older marshes (8 years+) were characterized by comparable trophic diversity and breadth compared to their reference marshes. Interpretation of results for the youngest site was confounded by the fact that the paired reference, which represented the desired end goal of restoration, contained a greater diversity of basal resources. Stable isotope techniques may give coastal managers an additional tool to assess functional equivalency of created marshes, as measured by trophic support, but may be limited to comparisons of marshes with similar vegetative communities and basal resources, or require the development of robust standardization techniques.  相似文献   

19.
Since 1965 large areas of lower Connecticut River tidelands have been converted from high diversity brackish meadow andTypha angustifolia marsh to near monocultures ofPhragmites australis. This study addresses the impact ofPhragmites invasion on fish and crustacean use of oligohaline high marsh. During spring tides from early June through early September 2000, fishes and crustaceans leaving flooded marsh along 3 km of the Lieutenant River, a lower Connecticut River tributary, were captured with Breder traps at 90 sites, equally distributed amongPhragmites, Typha, and treated (herbicide and mowing)Phragmites areas. Pit traps, 18 per vegetation type in 2000 and 30 each inPhragmites andTypha in 2001, caught larvae and juveniles at distances of up to 30 m into the marsh interior. There were no significant differences in fish species compositions or abundances among the vegetation types. Size distributions, size specific biomasses, and diets ofFundulus heteroclitus, the numerically dominant fish, were also similar. The shrimpPalaemonetes pugio was more abundant inPhragmites than in other types of vegetation, whereas the fiddler crabUca minax was least numerous inPhragmites. Mean numbers ofF. heteroclitus andP. pugio caught per site event were positively correlated with increasing site hydroperiod. Significantly moreF. heteroclitus were captured along the upper reach of the river where marsh elevations were lower than farther downstream. MoreF. heteroclitus and fewerP. pugio andU. minax were captured during the day than at night. A relatively small number of larval and juvenileFundulus sp. were captured in pit traps, but consistently fewer inPhragmites than inTypha, suggesting thatTypha and brackish meadow marshes may provide better nursery habitat. Vegetation was sampled along a 30 m transect at each trap site in 2000. Plant species diversity was greatest in treatedPhragmites areas and lowest inPhragmites sites.  相似文献   

20.
Quantifying the relative value ofPhragmites australis andSpartina alterniflora habitat is important to evaluate the benefits and risks of different attempts to addressPhragmites expansion on the U.S. eastern seaboard. Two contrasting approaches commonly used to restore tidal marsh habitats invaded byPhragmites communities involve sprayingPhragmites with herbicide only when its coverage of a particular marsh area is near or close to 100%. Alternatively, after the first application, herbicide is annually applied on any surviving patches ofPhragmites present in a mosaic of other marsh vegetation. A model is introduced to evaluate the relative habitat value of these control regimes, here termed the Intermittent and Continuous. Compared to the Intermittent approach, the area of herbicide application in the Continuous approach is higher in the first 6 yr, but lower the reafter. The cumulative gain in habitat quality after 20 yr in either approach is sensitive to the presumed relative values ofPhragmites versusSpartina habitat, and may even be negative if they are nearly equal. Annual applications of herbicide to patches ofPhragmites appears to generate more habitat value and with less herbicide than occasional applications whenPhragmites cover is at is maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号