首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用有限元方法研究含湿孔隙岩石的有效热导率,即随机划分网格并指定材料性质,建立三维含湿孔隙岩石的有限元模型,模型的上下表面施加不同的温度,侧面绝热,计算出总热流,然后结合上下表面的温度梯度计算出岩石的有效热导率.考虑到单个随机模型不一定具有代表性,对给定的孔隙率和饱和度均生成了200种矿物、水、空气随机分布的岩石模型,进行Monte Carlo实验和统计分析,统计分析结果与前人实验结果吻合良好.数值分析结果表明,孔隙岩石的有效热导率与岩石的孔隙率、饱和度、固体矿物组分及孔隙的分布情况有关,数值计算的误差随着网格数目的增加而减小.此有限元方法可以用来估算岩石的有效热导率,在已知组分性质的多矿物岩石物性计算方面有广阔应用前景.  相似文献   

2.
Fire in the natural environment is a widespread agent of geomorphological and biological change. Temperatures can exceed 1000°C. There is often a rapid rise from ambient conditions through a steep thermal gradient, promoting rock disintegration. Laboratory simulation studies have established that temperature changes which are representative of natural fires affect rock material properties, which can then be related to weathering susceptibility. This study extends previous work by more closely replicating the natural environment, (a) through the simulation of rainfall and (b) by encasing samples to reflect the exposure of a single rock face to a passing fire event. Rock samples collected on Cyprus were prepared and tested following previously reported procedures. Change in modulus of elasticity was monitored using a non-destructive ultrasonic method. The data corroborate previous work but with somewhat different degrees of change. The new results are more likely to be representative of natural conditions and real-world change. The rate of rock disintegration and effects such as case-hardening appear to be a function of rock thermal characteristics, material properties and environmental constraints such as diurnal temperature range. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Where rocks are composed of translucent minerals, light penetrates the rock and, in so doing, impacts on the thermal conditions. Where minerals are not translucent all the heat transformation must be at the rock surface, and steep thermal gradients can occur. Where light does penetrate, a component of the incoming radiation is transformed to heat at differing depths within the rock, thereby decreasing the thermal gradient. Equally, light transmissive minerals facilitate endolithic communities, which can also play a role in rock weathering. The attribute of light transmission within rock and the impact this has on the resulting thermal conditions has not been considered within rock weathering studies. An attempt was made to monitor the amount of light penetrating the outer 2 mm of coarse granite under Antarctic summer conditions and to evaluate the thermal impact of this. It was found that the amount of light penetration at this site exceeded modeled or postulated values from biological studies and that it could significantly impact the thermal conditions within the outer shell of the rock. Although the resulting data highlighted a number of flaws in the experimental procedure, sufficient information was generated to provide the first assessment of the range of thermal responses due to light transmissive minerals in rock. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
根据岩石的热Kaiser效应,岩石能够记忆地质历史中经历过的最高温度.本次实验使用自行研制的岩石热声发射仪,利用人工加热的砂岩和灰岩样品证实了沉积岩存在热Kaiser效应,并探讨了根据热Kaiser效应测量沉积岩经历的最高温度的准确性.通过对塔里木盆地的系列埋深(2800~5300 m)的砂岩和泥岩样品及川西地区灰岩样...  相似文献   

5.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

6.
To aid rock art conservation, rock temperatures have been monitored at different depths and at low (30 min) and high (1 min) acquisition rates in a painted rock shelter in the uKhahlamba‐Drakensberg Park (South Africa). Preliminary data for winter (cold and dry) show that in that season cryoclasty is unlikely to occur (rare subzero thermal events and probable reduced moisture availability) and thermal shocks are improbable (highest measured ΔTt < 2 °C min?1). High amplitude (about 30 °C) rock temperature cycles accompanied by reversals of the thermal gradient have been observed to occur almost daily and hint at the possibility of thermal stress fatigue. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Many undertakings have used either a single value or a narrow window of temperatures as a threshold for the freezing of water within rock. These temperatures vary from 0 to ?5 C, with most windows being in the range ?1 to ?4 C. Based on thermal data, these thresholds are commonly used to ‘count’ the number of freeze–thaw events as a basis for determining freeze–thaw weathering. Data collected from northern Canada indicate that the temperature at which freezing occurs can vary substantially, even for the same site. Using exotherm and zero curtain observations from bricks, at angles of 90 and 45, aligned to the four cardinal aspects, the various temperatures at which water froze are shown. Bricks on the north and east commonly did exhibit freezing, based on exotherms, within the window ?1 to ?5 C, while data for the south and west aspects showed substantial variation, with freezes sometimes between ?6·4 and ?8·9 C. The data were evaluated for evidence of zero curtain effects (indicative of water freezing), but no unequivocal events could be found, and it is suggested that, at the scale of observation used here, they are unlikely. It would therefore appear that the use of thermal thresholds may not be meaningful for evaluation of freeze–thaw events. The available data also indicate many instances when temperatures went substantially sub‐zero (e.g. ?20 C) and yet no indication of water freezing occurred – most likely because there was no water available to freeze. This indicates that any form of freeze–thaw event counting, in the absence of some indicator of the presence of water and that it actually froze, is flawed, as thermal conditions alone are not adequate to indicate the occurrence or not of actual freeze–thaw weathering events. These data suggest that evaluations of freeze–thaw occurrence based simply on thermal thresholds may be substantially in error. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green’s function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx (q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.  相似文献   

9.
The subsurface temperature field of a rock slope is a key variable influencing both bedrock fracturing and slope stability. However, significant unknowns remain relating to the effect of air and water fracture flow, which can rapidly transmit temperature changes to appreciable depths. In this work, we analyze a unique set of temperature measurements from an alpine rock slope at ~2400 m a.s.l. in southern Switzerland. The monitored area encompasses part of an active slope instability above the village of Randa (VS) and is traversed by a network of open cracks, some of which have been traced to >80 m depth. We first describe distributed temperature measurements and borehole profiles, highlighting deep steady temperatures and different transient effects, and then use these data to approximate the conductive temperature field at the site. In a second step, we analyze the impact of air and water circulation in deep open fractures on the subsurface thermal field. On multiple visits to the study site in winter, we consistently noted the presence of warm air vents in the snowpack following the trace of deep tension cracks. Measurements showed that venting air changed temperature gradually from ~3 to 2 °C between December and May, which is similar to the rock temperature at around 50 m depth. Comparison with ambient air temperature suggests that winter conditions favor buoyancy‐driven convective air flow in these fractures, which acts to cool the deep subsurface as the rock gives up heat to incoming air. The potential impact of this process on the local thermal field is revealed by a disturbed temperature profile in one borehole and transient signals observed at depths well below the thermal active layer. Seasonal water infiltration during snowmelt appears to have little impact on the temperature field in the monitored area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A wide range of rock magnetic properties have been determined from two collections of mid-Cretaceous basalts; one from Israel, the other from the Rajmahal traps in northeast India. Deuteric oxidation is rare in both collections, with titanium-rich titanomagnetite being the principal remanence carrier in most cases. There are a number of differences in rock magnetic properties between the two groups. Some of these seem to be primary, whereas others appear to be caused by hydrothermal alteration and weathering, which are more prevalent in the Indian rocks. These rocks are being used in palaeointensity experiments, from which it is hoped to determine the strength of the Earth's magnetic field during the long period of normal polarity in the mid-Cretaceous. Thellier palaeointensity experiments have been performed on two samples from each site. The degree of agreement between the two results is highly variable. The low blocking temperatures and the presence of secondary viscous components in many samples make Thellier palaeointensity experiments very difficult. A further problem is that of thermal alteration, two main types of which are observed. The first manifests itself as a large and sudden increase in partial thermoremanent magnetization (pTRM) capacity, and the second as a steady decrease in the size of pTRM with increasing temperature.  相似文献   

11.
The essential conditions for effective and ecologically safe exploitation of underground waste storage are maintenance, prevention, and monitoring of tightness of rock masses covering and surrounding the reservoir rock complex. This monitoring can be realized by a especially designed acoustic measurement system.The reservoir rock complexes - without leakage - are supposed to be in physical equilibrium; without changes of rock dynamic properties the acoustic emission vanishes. In contrast, as is shown, the results of the field tests carried out in coal mines proved that there was a correlation between the stresses and the acoustic emission ratio. The laboratory experiments also showed correlation between changes of permeability of coal samples and acoustic emission.the explanation of the observed results is based on the development of inelastic deformation of a rock skeleton. The plastic strains in the porous rock appear after overcoming the yield point. The yield point value can be extended by increase of shear stresses, effective stresses and interstitial pressure.In particular, there are three kinds of dynamic phases which may appear preceding the failure of leak tightness:
1. (1) breaking of the rock masses due to stress (Griffith criterion of stability may be expressed in terms of the acoustic emission parameters),
2. (2) the dilatant corrosion of pressure plasticity resulting from chemical, physical and thermal activities, and
3. (3) the destructive increase of pressure in rock pores.
This paper presents the statistical parameters describing the acoustic emission from the rock mass and the dynamic processes mentioned above are described in terms of seismoacoustic activity.  相似文献   

12.
五峰-龙马溪组页岩是目前国内页岩气勘探的首选层位,而其地震岩石物理特征是利用地震方法进行"甜点"预测的重要基础之一,但对五峰-龙马溪组页岩地震弹性特征变化规律的研究并未考虑沉积、成岩过程的影响,致使相应的规律性认识缺乏地质意义.在对五峰-龙马溪组页岩样品系统声学测量基础上,分析了页岩样品地震弹性性质的变化规律.利用X射线衍射分析、扫描电镜(SEM)、阴极发光(CL)与能谱分析确定了五峰-龙马溪组页岩在不同沉积环境下的成岩过程,并讨论了成岩过程与地震弹性性质变化规律的因果关系.研究结果表明,页岩中有机质(TOC)受高热演化程度的影响,其密度通常高于1.4 g·cm-3,并接近于有机碳密度上限1.6 g·cm-3(石墨密度).五峰-龙马溪组页岩地震弹性性质变化规律整体受沉积环境控制,沉积环境的差异形成不同的成岩过程,致使地震弹性特征也表现出不同的变化规律.表现在五峰-龙马溪页岩样品动态岩石物理特征主要受岩石结构控制(支撑颗粒弹性性质),而孔隙度、TOC含量以及孔隙形状则为对地震弹性特征影响的次一级因素.五峰-龙马溪组页岩上段为浅水陆棚相,机械压实与化学压实(硅质胶结)为先后两个过程,造成样品表现出高的速度-孔隙度变化率、高速度比(泊松比)、高各向异性以及低TOC含量的特征.五峰-龙马溪组页岩下段为深水陆棚相,机械压实过程中同时伴有生物成因的硅质胶结,造成岩石样品表现出较高TOC含量与孔隙度、各向异性较弱以及较小的速度-孔隙度变化率.研究结果可为五峰-龙马溪页气储层的测井解释和地震"甜点"预测提供依据.  相似文献   

13.
Natural heat stored in the earth's interior represents an essentially inexhaustible energy supply which, at usefully high temperatures, is accessible at practical drilling depths from almost anywhere on the earth's land surface. The problems of extracting and using this heat are those of engineering and economics, and can be expected to vary with the local geology and value of thermal energy. The first major experimental system designed to investigate these problems in one common type of geologic environment has recently been completed in the crystalline rock underlying the Jemez Plateau of northern New Mexico. It consists principally of two boreholes connected at a depth of about 2.7 km by a system of hydraulic fractures produced in granitic rock at a temperature of approximately 185°C. Cool water injected through one hole is heated as it flows through the fractures, and is recovered through the second hole as pressurized, superheated water. In a surface heat-exchange system now being completed, this heat will be extracted and the cool water reinjected to maintain a continuous, closed, pressurized-water energy-extraction loop.  相似文献   

14.
Rock typing and flow unit detection are more challenging in clastic reservoirs with a uniform pore system. An integrated workflow based on well logs, inverted seismic data and rock physics models is proposed and developed to address such challenges. The proposed workflow supplies a plausible reservoir model for further investigation and adds extra information. Then, this workflow has been implemented in order to define different rock types and flow units in an oilfield in the Persian Gulf, where some of these difficulties have been observed. Here, rock physics models have the leading role in our proposed workflow by providing a diagnostic framework in which we successfully differentiate three rock types with variant characteristics on the given wells. Furthermore, permeability and porosity are calculated using the available rock physics models to define several flow units. Then, we extend our investigation to the entire reservoir by means of simultaneous inversion and rock physics models. The outcomes of the study suggest that in sediments with homogeneous pore size distribution, other reservoir properties such as shale content and cementation (which have distinct effects on the elastic domain) can be used to identify rock types and flow units. These reservoir properties have more physical insights for modelling purposes and can be distinguished on seismic cube using proper rock physics models. The results illustrate that the studied reservoir mainly consists of rock type B, which is unconsolidated sands and has the characteristics of a reservoir for subsequent fluid flow unit analysis. In this regard, rock type B has been divided into six fluid units in which the first detected flow unit is considered as the cleanest unit and has the highest reservoir process speed about 4800 to 5000 mD. Here, reservoir quality decreases from flow unit 1 to flow unit 6.  相似文献   

15.
The thermal regimes of alpine streams remain understudied and have important implications for cold‐water fish habitat, which is expected to decline due to climatic warming. Previous research has focused on the effects of distributed energy fluxes and meltwater from snowpacks and glaciers on the temperature of mountain streams. This study presents the effects of the groundwater spring discharge from an inactive rock glacier containing little ground ice on the temperature of an alpine stream. Rock glaciers are coarse blocky landforms that are ubiquitous in alpine environments and typically exhibit low groundwater discharge temperatures and resilience to climatic warming. Water temperature data indicate that the rock glacier spring cools the stream by an average of 3 °C during July and August and reduces maximum daily temperatures by an average of 5 °C during the peak temperature period of the first two weeks in August, producing a cold‐water refuge downstream of the spring. The distributed stream surface and streambed energy fluxes are calculated for the reach along the toe of the rock glacier, and solar radiation dominates the distributed stream energy budget. The lateral advective heat flux generated by the rock glacier spring is compared to the distributed energy fluxes over the study reach, and the spring advective heat flux is the dominant control on stream temperature at the reach scale. This study highlights the potential for coarse blocky landforms to generate climatically resilient cold‐water refuges in alpine streams.  相似文献   

16.
地震岩石物理研究进展   总被引:1,自引:3,他引:1       下载免费PDF全文
地震岩石物理(Seismic Rock Physics)是研究岩石物理性质与地震响应之间关系的一门学科,旨在通过研究不同温度压力条件下岩性、孔隙度、孔隙流体等对岩石弹性性质的影响,分析地震波传播规律,建立各岩性参数、物性参数与地震速度、密度等弹性参数之间的关系.本文主要论述了半个多世纪以来,国内外地震岩石物理在岩石、流体基础研究、烃类检测等方面取得的主要进展,并分析目前国内岩石物理的研究现状、存在的问题、最新研究动向及展望.  相似文献   

17.
Subsurface temperatures in rocks naturally fluctuate under the influence of local meteorological conditions. These fluctuations play a role in mechanical weathering, thus creating the environmental conditions conducive to natural hazards such as rockfalls and providing important sediment source terms for landscape evolution. However, the physics that control heat penetration into rocks are not fully understood, which makes the underground thermal state difficult to interpret when temperature measurements are available and even more difficult to estimate for unmonitored sites. This is an important lacuna given possible impacts of future climate change on mechanical weathering processes. The natural daily variations of subsurface temperatures were investigated on a bare gneiss outcrop exposed to solar radiation, where temperatures at various depths (up to 50 cm), as well as the solar radiation reaching a pyranometer, were monitored hourly for several months. This detailed times series of thermal data was used to gain insight into the heat balance at the inclined free surface of the rock mass. Attention was focused on two major contributors to the heat balance; the heat flux entering the rock mass through conduction and the incoming shortwave (solar) radiation. A Fourier decomposition of the temperature measurements provided an estimate of the in situ thermal conductivity of the rock and was used to calculate the conductive term. The shortwave radiation term was determined on the basis of the pyranometer measurements adjusted to account for the angle of incidence of the sun. It is shown that, throughout clear‐sky periods, heat exchanges at the surface are mainly controlled by direct solar radiation during the day, and by a roughly constant outgoing heat flux during the night. Subsurface temperatures can be reliably estimated with a semi‐infinite medium model whose boundary condition is derived from an analytical insolation model that takes atmospheric attenuation into account. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Despite recent rapid advances in the field of structure-from-motion (SfM) photogrammetry, the use of high-resolution data to investigate small-scale processes is a relatively underdeveloped field. In particular, rock weathering is rarely investigated using this suite of techniques. This research uses a combination of traditional non-destructive rock weathering measurement techniques (rock surface hardness) and SfM to map deterioration and loss of cohesion of the surface using three-dimensional data. The results are used to interpret weathering behaviour across two different lithologies present on the site, namely shale and limestone. This new approach is tested on seven sites in Longyearbyen, Svalbard, where active weathering of a rock surface was measured after 13 years of exposure to extreme temperature regimes and snow cover. The surface loss was quantified with SfM and combined with rock surface hardness measurement distributions extrapolated in geographic information system (GIS). The combined results are used here to quantify the difference in response of both lithologies to these extreme temperatures. This research demonstrates the potential for further integration of SfM in rock weathering research and other small-scale geomorphological investigations, in particular in difficult field conditions where portability of field equipment is paramount. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Granular disintegration has long been recognized and referred to in weathering texts from all environments, including the Antarctic. Despite this universal identification and referral, few to no data exist regarding thermal conditions at this scale and causative mechanisms remain little more than conjecture. Here, as part of a larger weathering study, thermal data of individual grains (using infrared thermometry and ultra‐fine thermocouples) composing a coarse granite, as well as the thermal gradients in the outer 10 cm (using thermistors), were collected from a north‐facing exposure. Measurements were also made regarding the surface roughness of the rock. Based on recorded temperatures, the nature of the rock surface and the properties of the minerals, an argument is made for complex stress fields that lead to granular disintegration. Mineral to mineral temperature differences found to occur were, in part, due to the changing exposure to solar radiation through the day (and through seasons). Because the thermal conductivity and the coefficient of thermal expansion of quartz are not equal in all directions, coupled with the vagaries of heating, this leads to inter‐granular stresses. Although fracture toughness increases with a decrease in temperature, it is suggested that the tensile forces resulting from falling temperatures are able to exceed this and produce granular disassociation. The lack of equality with respect to crystal axis of both thermal conductivity and expansion in quartz further exacerbates the propensity to failure. Grain size and porosity also influence the thermal stresses and may help explain why some grains are held in place despite disassociation near the surface. While the data presented here appear to beg more questions than providing answers, they do provide a basis for better, more detailed studies of this important weathering scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The remote sensing observational study for infrared radiation of rocks was proceeded during the loading on rocks until failure. The major instruments used in experiments were transient spectrum apparatus, intelligent spectrum apparatus, infrared radiation thermometer, infrared spectrum radiometer, and infrared thermal imaging system. The experiments for 26 kinds of rocks were made. The studies show that infrared radiation temperature of rocks increases along with increasing of stress. The amplitude of infrared radiation spectrum of rocks also increases along with increasing of stress. The observational results of infrared thermal imaging of rocks are consistent with infrared radiation temperature. Before formation of major faults for some rocks, the belt-shape thermal imaging of temperature anomaly displaies in position of future major faults. This study has led the new technology of remote sensing into rock mechanics and tend to establish a new field in rock mechanics — remote sensing rock mechanics (or remote sensing rock physics). The application of remote sensing rock mechanics in prediction of earthquake and rock burst, and in measurement of stress field in rock mass is expected. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 645–652, 1992. Jin-Shen HAO, Ji-Han LI, Xiao-Hong LIU, Yi-Qiao ZHI, Jin-Kai ZHANG, Yong-Hong Lü, Yi LIU, Yun-Shen YU, He ZHANG, Quan-Quan JI, Xiao-Fan ZHU and Ning CHEN took part in this work. This subject is supported by the Chinese Joint Seismological Science Foundation (91006). Work of Institute of Geophysics, SSB (93A0009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号