共查询到14条相似文献,搜索用时 0 毫秒
1.
R. U. Cooke 《地球表面变化过程与地形》1979,4(4):347-359
The equipment and techniques being used at Bedford College, London to simulate salt weathering processes in deserts are described in the context of a general discussion of the nature of salt weathering processes and approaches to studying them. An experiment based on the equipment and techniques is described: it is designed to test the durability of three building stones in the presence of several different saline solutions under conditions of surface temperature and relative humidity that are considered typical of hot deserts. The experiment, the first of a series, shows that Na2SO4 is the most effective of the salts used, and that susceptibility of the rocks to weathering is related to such rock properties as porosity, microporosity and water absorption capacity. 相似文献
2.
A. S. Goudie 《地球表面变化过程与地形》1986,11(3):275-285
‘The wick effect’ is the upward migration of saline solutions into rocks and their subsequent crystallization. Lower Carboniferous sandstone blocks of rectangular shape have been subjected to this process in the laboratory using a range of salt types, a range of salt concentrations, and various mixtures of salts. Some treatments produced severe disintegration, notably sodium carbonate and a mixture of sodium carbonate with magnesium sulphate, whereas other salts (including sodium chloride and gypsum) were much less effective. The debris produced by this experimental salt weathering included appreciable quantities of silt-sized material, which were analysed with a laser granulometer. Such material could provide a source for desert loess. 相似文献
3.
D. N. Mottershead 《地球表面变化过程与地形》1989,14(5):383-398
Rapid surface lowering of bedrock is taking place in the supratidal zone by salt spray weathering. A seven-year run of data demonstrates a mean rate of lowering of 0·625 mm a?1. Considerable variation exists in annual point lowering values within measurement sites, although between-site variation is not significant. Aggregate year to year variations in surface lowering are not significant. Spatial variation in individual point values may be compensated by temporal variation over an 11-year period. There is a marked summer maximum in surface lowering rate, and this is strongly correlated with monthly air temperature. Spatially and temporally episodic swelling of the rock surface is demonstrated. This does not correlate statistically with any available climatic variable and is deemed to be a real and largely stochastic phenomenon. It is interpreted as rock bursting at the granular scale due to haloclasty. The processes most likely to be responsible for the observed rapid denudation are crystallization and thermal expansion of halite, both of which are enhanced by high summer temperatures. 相似文献
4.
Rectangular blocks of York Stone and of concrete placed on a sodium chloride sabkha in southern Tunisia for six years suffered very severe breakdown, thereby indicating the power of salt weathering as a process in sabkha environments. 相似文献
5.
A laboratory study has been used to investigate relationships between salts and contour scaling—a weathering feature commonly observed on rock surfaces in salt-rich environments. Surface disaggregation and essentially surface-parallel cracks were produced in sandstone blocks using 10 per cent solutions of sodium sulphate and magnesium sulphate applied daily to single exposed surfaces for sixty days. A control block soaked once in saturated magnesium sulphate and subsequently wetted daily with distilled water showed extensive surface disaggregation, but no cracking. Both surface disaggregation and subsurface cracking were associated with relative concentrations of microcrystalline salt. A tentative model of contour scaling is proposed, which involves linking together potential cracks by salt-induced fracturing of intervening, crack-stopping grains. Further control blocks treated respectively with 10 per cent and saturated sodium chloride showed no evidence of subsurface cracking and only limited surface disaggregation of the ‘saturated’ block. 相似文献
6.
Fires occur frequently in many biomes and generate high temperatures on the ground surface. There are many field examples of fire causing rock disintegration. The simulation of fire in the laboratory (using a furnace) and the monitoring of changes in rock modulus of elasticity (with a Grindosonic apparatus), reveal that different rocks respond differently to heating. Significant decreases in elasticity occur at temperatures as low as 200°C and granites display particularly marked reductions. Extended periods of heating are not required for significant reductions to occur. It is postulated that the degree of change in elasticity as a result of simulated fire is such that rock outcrops subjected to real fires are likely to be sufficiently modified as to increase their susceptibility to erosion and weathering processes. 相似文献
7.
A. S. Goudie 《地球表面变化过程与地形》1977,2(1):75-86
In Pakistan various brick building structures are currently disintegrating in the Indus Valley. These include the Harappan site of Mohenjo-Daro. The environment of this site is described, the nature and speed of the disintegration problem is outlined, and the cause of disintegration is discussed Weathering occurs in association with the development of salt efflorescences and some bricks disintegrate only a few years after being laid down. Chemical and X-ray diffraction analyses show that the predominant salt is the sodium sulphate mineral thenardite. The reasons for its effectiveness are discussed. They include its high solubility, the rapid change of solubility with temperature, and its hydration characteristics. 相似文献
8.
Micro- and macroscale experiments which document the dynamics of salt damage to porous stone have yielded data which expose weaknesses in earlier interpretations. Previously unexplained differences are found in crystal morphology, crystallization patterns, kinetics and substrate damage when comparing the growth of mirabilite (Na2SO4. 10H2O) and thenardite (Na2SO4) versus halite (NaCl). The crystallization pattern of sodium sulphate was strongly affected by relative humidity (RH), while a lesser RH effect was observed for sodium chloride. Macroscale experiments confirmed that mirabilite (crystallizing at RH > 50 per cent) and thenardite (crystallizing at RH < 50 per cent) tend to form subflorescence in highly localized areas under conditions of constant RH and temperature. This crystallization pattern was more damaging than that of halite, since halite tended to grow as efflorescence or by filling the smallest pores of the stone in a homogeneous fashion, a result which contradicts Wellman and Wilson's theoretical model of salt damage. Low RH promoted rapid evaporation of saline solutions and higher supersaturation levels, resulting in the greatest damage to the stone in the case of both sodium sulphate and sodium chloride crystallization. At any particular crystallization condition, sodium chloride tended to reach lower supersaturation levels (resulting in the crystallization of isometric crystals) and created negligible damage, while sodium sulphate reached higher supersaturation ratios (resulting in non-equilibrium crystal shapes), resulting in significant damage. ESEM showed no damage from sodium sulphate due to hydration. Instead, after water condensation on thenardite crystals, rapid dissolution followed by precipitation of mirabilite took place, resulting in stone damage by means of crystallization pressure generation. It is concluded that salt damage due to crystallization pressure appears to be largely a function of solution supersaturation ratio and location of crystallization. These key factors are related to solution properties and evaporation rates, which are constrained by solution composition, environmental conditions, substrate properties, and salt crystallization growth patterns. When combined with a critical review of salt damage literature, these experiments allow the development of a model which explains variations in damage related to combinations of different salts, substrates and environmental conditions. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
9.
Data describing sediment generation focusing on the temporal evolution of size gradation are required for the prediction of long‐term landform evolution. This paper presents such data for the salt weathering of a quartz‐chlorite schist obtained from the Ranger Uranium Mine in northern Australia. Rock fragment samples are subjected to three different climate regimes: (1) a dry season climate; (2) a wet season climate (both based on observations at the Ranger site); and (3) an oven‐drying sequence designed to test the sensitivity of the weathering process by exposing the rocks to more extreme temperatures. Two MgSO4 salt solutions are applied, one being typical of wet season runoff and the other a more concentrated solution. Salt solution is applied daily in the wet season experiments and once only at the beginning of the dry season experiments. Results of the experiments reveal four stages of weathering. The kinetics of each stage are described and related to the formation of sediment of different sizes. Wet season climate conditions are shown to produce greater moisture variability and lead to faster weathering rates. However, salt concentrations in the wet season are typically lower and so when climate is combined with observed salt concentrations, the dry and wet season experiments weather at approximately equal rates. Finally, small variations in rock properties were shown to have a large impact on weathering rates, leading to the conclusion that rock weathering experiments need to be carefully designed if results are to be used to help predict weathering behaviour at the landscape scale. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
10.
Yinghong Wang Heather Viles Julie Desarnaud Shanlong Yang Qinglin Guo 《地球表面变化过程与地形》2021,46(5):1055-1066
Salt weathering is a significant process affecting the deterioration and conservation of stone-built heritage in many locations and environments. While much research has focused on the impact of salt weathering under arid or coastal conditions with characteristic climatic conditions and salt types, many sites found to be experiencing salt-induced deterioration, such as sandstone rock-hewn cave temples in Gansu Province, China and sandstone buildings in the northern UK, experience high humidities, moderate temperature ranges, and different salt types. To evaluate the impact of salt weathering on sandstone-built heritage under such mild humid environmental conditions, a lab simulation experiment was designed. The experiment was carried out on three types of sandstone (used in the northern UK and Gansu Province, China) and utilized a realistic diurnal humidity and temperature cycle (85% RH/16°C + 60% RH/22°C), and three widespread damaging salts, that is, Na2SO4, MgSO4, and the mixture of Na2SO4–MgSO4. The nature and extent of deterioration was monitored by photography, weight loss, and the changes in petrophysical properties measured using hardness, ultrasonic pulse velocity (P-wave velocity), water absorption coefficient by capillarity, open porosity, and apparent density. All three sandstones were found to be susceptible to MgSO4 and the mixture of Na2SO4–MgSO4, but weakly affected by Na2SO4 under mild humid environmental conditions. 相似文献
11.
水力压裂是干热岩(HDR)开发最常用到的压裂方式, 水力压裂形成的裂缝网络为增强地热系统的运行(EGS)提供了高渗透率的人工储层.本文在系统总结前人关于共和盆地水力压裂实验、数值模拟资料和现场水力压裂监测结果的基础上, 引入了离散裂缝网络(DFN), 利用多物理场模拟软件COMSOL Multiphysics建立了共和盆地恰卜恰地区干热岩开采过程中的二维裂缝-基质热-孔隙流体耦合模型, 并讨论了裂缝开度和基质渗透率对干热岩开采温度下降过程的影响.结果表明, 裂缝网络是流体运移的主要通道.温度下降和早期压力变化范围沿着裂缝延伸, 并向周围被裂缝分割的基质扩展.裂缝开度和基质渗透率是影响干热岩地热开采过程中温度下降的重要因素.当裂缝开度越大时, 流体运移范围就越大, 储层温度和产出水温下降就越快, 储层下降范围就越广, 热突破时间和运行寿命就越短.当基质渗透率越大时, 越有利于流体进入基质进行热量交换, 越容易从干热岩中提取热量, 产出水温下降越快, 运行寿命越短.
相似文献12.
A micromorphological record of contemporary and relict pedogenic processes in soils of the Indo‐Gangetic Plains: implications for mineral weathering,provenance and climatic changes 下载免费PDF全文
Pankaj Srivastava Manini Aruche Ajay Arya Dilip K. Pal Lalan P. Singh 《地球表面变化过程与地形》2016,41(6):771-790
Micromorphology has important application in earth surface process and landform studies particularly in alluvial settings such as the Indo‐Gangetic Plains (IGP) with different geomorphic surfaces to identify climatic changes and neotectonic events and their influence on pedogenesis. The soils of the IGP extending from arid upland in the west to per humid deltaic plains in the east developed on five geomorphic surfaces namely QIG1 to QIG5 originating during the last 13.5 ka. Four soil‐geomorphic systems across the entire IGP are identified as: (i) the western Yamuna Plains/Uplands, (ii) the Yamuna‐Ganga Interfluve, (iii) the Ganga‐Ghaghara Interfluve, and (iv) the Deltaic Plains. Thin section analysis of the soils across the four soil‐geomorphic systems provides a record of provenance, mineral weathering, pedogenic processes and polygenesis in IGP. The soils over major parts of the IGP dominantly contain muscovite and quartz and small fraction of highly altered feldspar derived from the Himalayas. However, soils in the western and eastern parts of the IGP contain large volumes of fresh to weakly altered plagioclase and smectitic clay derived from the Indian craton. The soils in western Yamuna Plains/Uplands dominated by QIG2–QIG3 geomorphic surfaces and pedogenic carbonate developed in semi‐arid climate prior to 5 ka. However, soils of the central part of the IGP in the Yamuna‐Ganga Interfluve and Ganga‐Ghaghara Interfluve regions with dominance of QIG4–QIG5 surfaces are polygenetic due to climate change over the last 13.5 ka. The clay pedofeatures formed during earlier wet phase (13.5–11 ka) show degradation, loss of preferred orientation, speckled appearance in contrast with the later phase of wet climate (6.5–4 ka). The soils over the deltaic plains with dominance of vertic features along with clay pedofeatures suggest that illuviation of fine clay is an important pedogenic process even in soils with shrink‐swell characteristics. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
Matthias Sprenger Doerthe Tetzlaff Jim Buttle Sean K. Carey James P. McNamara Hjalmar Laudon Nadine J. Shatilla Chris Soulsby 《水文研究》2018,32(12):1720-1737
Quantifying soil water storage, mixing, and release via recharge, transpiration, and evaporation is essential for a better understanding of critical zone processes. Here, we integrate stable isotope (2H and 18O of soil water, precipitation, and groundwater) and hydrometric (soil moisture) data from 5 long‐term experimental catchments along a hydroclimatic gradient across northern latitudes: Dry Creek (USA), Bruntland Burn (Scotland), Dorset (Canada), Krycklan (Sweden), and Wolf Creek (Canada). Within each catchment, 6 to 11 isotope sampling campaigns occurred at 2 to 4 sampling locations over at least 1 year. Analysis for 2H and 18O in the bulk pore water was done for >2,500 soil samples either by cryogenic extraction (Dry Creek) or by direct equilibration (other sites). The results showed a similar general pattern that soil water isotope variability reflected the seasonality of the precipitation input signal. However, pronounced differences among sampling locations occurred regarding the isotopic fractionation due to evaporation. We found that antecedent precipitation volumes mainly governed the fractionation signal, temperature and evaporation rates were of secondary importance, and soil moisture played only a minor role in the variability of soil water evaporation fractionation across the hydroclimatic gradient. We further observed that soil waters beneath conifer trees were more fractionated than beneath heather shrubs or red oak trees, indicating higher soil evaporation rates in coniferous forests. Sampling locations closer to streams were more damped and depleted in their stable isotopic composition than hillslope sites, revealing increased subsurface mixing towards the saturated zone and a preferential recharge of winter precipitation. Bulk soil waters generally comprised a high share of waters older than 14 days, which indicates that the water in soil pores are usually not fully replaced by recent infiltration events. The presented stable isotope data of soil water were, thus, a useful tool to track the spatial variability of water fluxes within and from the critical zone. Such data provide invaluable information to improve the representation of critical zone processes in spatially distributed hydrological models. 相似文献
14.
Modelling hydrological processes influenced by soil,rock and vegetation in a small karst basin of southwest China 总被引:1,自引:0,他引:1
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献