首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
It has been shown that the major clay minerals of the biothermocatalytic transitional zone source rock are montmorillonite, illite/montmorillonite (I/M) interlayer mineral, illite, kaolinite and chlorite. Within the depth of the transitional zone, montmorillonite could convert to the I/M ordered interlayer mineral via the I/M disordered one, i.e. in the intercrystalline layer of montmorillonite, A13+replaces Si4+abundantly, resulting in a surface charge imbalance and the occurrenec of a surface acidity. By means of the pyridine analytic method, the surface acidity of these aluminosilicate clay minerals is measured. The catalysis of aluminosilicate clay minerals, such as montmorillonite, illite and kaolinite to the thermo-degraded gas formation of the transitional zone is simulated in the differential thermal analysis-gas chromatography system and the alcohol dehydration catalyzed by clay minerals is employed to discuss this catalytic mechanism. Experiments have shown that montmorillonite is the major catalyst in the formation of the transitional zone gas and it lowers the thermo-degraded temperature of organic matter by 50°C.  相似文献   

2.
Located at the northeastern margin of the Qinghai-Tibet Plateau (QTP) in the Asian interior, the Lake Qinghai is sensitive to environmental change and thus an outstanding site for studying paleoenvironmental changes. Thick deposits in the Lake Qinghai provide important geological archives for obtaining high-resolution records of continental environmental history. The longest drilling core obtained from the Lake Qinghai, named Erlangjian (ELJ), reached about 1109 m and was investigated to determine its clay mineral assemblage and grain size distributions. Clay mineralogical proxies, including type, composition, and their ratios, as well as the illite crystallinity (KI) and chemical index (CI), in combination with grain size data, were used for reconstructing the history of paleoenvironmental evolution since the late Miocene in the Lake Qinghai Basin. The clay mineral records indicate that the clay mainly comprise detritus originating from peripheral material and has experienced little or no diagenesis. The proportion of authigenic origin was minor. Illite was the most abundant clay mineral, followed by chlorite, kaolinite, and smectite. Variations of clay mineral indexes reflect the cooling and drying trends in the Lake Qinghai region, and the grain size distribution is coincided with the clay minerals indexes. The paleoclimatic evolution of the Lake Qinghai Basin since the late Miocene can be divided into five intervals. The climate was relatively warm and wet in the early of late Miocene, then long-term trends in climate change character display cooling and drying; later in the late Miocene until early Pliocene the climate was in a short relatively warm and humid period; since then the climate was relatively colder and drier. These results also suggest multiple tectonic uplift events in the northeastern QTP.  相似文献   

3.
Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Pliocene(the last ~4.3 Ma). The results show that clay minerals at Site U1340 are dominated by illite, with a moderate amount of smectite and chlorite, and minor kaolinite. Sediment source studies suggest that the clay mineral assemblages and their sources in the studied core are controlled primarily by the climate conditions. During the warm periods, clay minerals originated mainly from the adjacent Aleutian Islands, and smectite/(illite+chlorite) ratios increased. During the cold periods, clay minerals from the Alaskan region distinctly increased, and smectite/(illite+chlorite) ratios declined. Based on smectite/(illite+chlorite) ratios and clay mineral crystallinities, the evolutionary history of the paleoclimate was revealed in the Bering Sea. In general, the Bering Sea was characterized by warm and wet climate condition from 4.3 to 3.94 Ma, and then cold and dry condition associated with the enhanced volcanism from 3.94 to 3.6 Ma. Thereafter, the climate gradually became cold and wet, and then was dominated by a cold and dry condition since 2.74 Ma, probably induced by the intensification of the Northern Hemisphere Glaciation. The interval from 1.95 to 1.07 Ma was a transitional period of the climate gradually becoming cold and wet. After the middle Pleistocene transition(1.07 to 0.8 Ma), the Bering Sea was governed mainly by cold and wet climate with several intervals of warm climate at ~0.42 Ma(MIS 11), ~0.33 Ma(MIS 9) and ~0.12 Ma(MIS 5), respectively. During the last 9.21 ka(the Holocene), the Bering Sea was characterized primarily by relatively warm and wet climatic conditions.  相似文献   

4.
The inner shelf mud wedge of the East China Sea(ECS) is a high-sedimentation-rate fine-grained sediment unit that has preserved a continuous environmental evolution history since the last deglaciation. We present a high-resolution clay mineralogical study from Core MD06-3040 to semi-quantitatively evaluate terrigenous sediment contributions from various potential provenances throughout the Holocene. The results showed that the clay mineral assemblage is composed of dominant illite(34–49%), moderate smectite(16–41%) and chlorite(15–28%), and minor kaolinite(5–12%). Provenance analysis suggested that most fine-grained terrigenous sediments originated from the Yangtze River, with minor sediments derived from Taiwan island and negligible sediments from nearby Zhejiang and Fujian provinces. Time series variation in the contribution of the Yangtze source fluctuated in the range of 38–80%, whereas that of Taiwan island had a converse variation pattern from ~10%to ~55%, and the contribution of Fujian was relatively stable in the range of 7–11% throughout the Holocene. The fluctuations of clay mineral assemblages and variations of clay mineral contributions from different provenances of Core MD06-3040 were controlled by the variability of precipitation in the Yangtze drainage associated with periodic fluctuations in the East Asian monsoonal circulation.  相似文献   

5.
Immediately after the flood event in summer 1997 at the Odra river, samples of flood sediments were taken for a complex phase analysis. The realized investigations show that the sampled flood sediments are very inhomogeneous. The main reasons for this substantial condition are surely different states of flow during the flood event. It is possible to characterize the investigated material as middle to fine sands with variable phase compositions. The mineral content of the fraction <2 μm shows a complex composition of amorphous matter, quartz, feldspars, and a different composed clay mineral matter. A high distribution of several mixed layers in the clay mineral phase is detectable. Within the scope of the taken analyses the following minerals were detected: kaolinite (disordered), kaolinite/smectite-mixed layer, chlorite/smectite-mixed layer, montmorillonite, illite/smectite-mixed layer, celadonite. The investigation of the heavy fraction shows heavy minerals and heavy particles of different geneses. Mainly these are geogenic, transparent heavy minerals like zircon, amphibole, garnet, pyroxene, apatite, rutile, and epidote. Furthermore there were analysed geogenic, opaque heavy minerals (magnetite and ilmenite), anthropogenic, opaque heavy particles (fly ashes and slags), and biogenic components (pyrite framboids). The substantial character of the investigated flood sediments (e.g. content of organic matter, content of clay minerals) shows that this material is able to act as a fixation medium of contaminants.  相似文献   

6.
The effect of the small fraction of clays on the rheological behaviour of alpine debris flow is poorly understood. This is partly due to the complexity of the debris flow mineralogy and the broad particle size distribution. This study has investigated this issue by simulating an alpine debris flow with a mixture of well characterized fractions and then varying the clay fraction composition. Four samples were tested, ranging from a clay fraction made up of only kaolinite (1:1 type clay) to samples where 80 per cent of the kaolinite is replaced by bedeillite (a 2:1 type clay similar to smectite). Changing the content of 2:1 type clay has a strong influence on the behaviour of the whole material, despite its low weight fraction of around 2 per cent. The tests carried out on these reconstituted materials were compared with the results obtained for natural debris flow materials and showed some common trends: in particular, the rheological parameters for materials with and without 2:1 clays with respect to yield stress as a function of solid content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract A multidisciplinary study was conducted on the section of the Siwalik Group sediments, approximately 5000 m thick, exposed along the Karnali River. Analysis of facies, clay mineralogy and neodymium isotope compositions revealed significant changes in the sedimentary record, allowing discussion of their tectonic or climatic origin. Two major changes within the sedimentary fill were detected: the change from a meandering to a braided river system at ca 9.5 Ma and the change from a deep sandy braided to a shallow sandy braided river system at ca 6.5 Ma. The 9.5‐Ma change in fluvial style is contemporaneous with an abrupt increase of ?Nd(0) values following a ?Nd(0) minimum. This evolution indicates a change in source material and erosion of Lesser Himalayan rocks within the Karnali catchment basin between 13 and 10 Ma. The tectonic activity along the Ramgarh thrust caused this local exhumation. By changing the proximity and morphology of relief, the forward propagation of the basal detachment to the main boundary thrust was responsible for the high gradient and sediment load required for the development of the braided river system. The change from a deep sandy braided to a shallow sandy braided river system at approximately 6.5 Ma was contemporaneous with a change in clay mineralogy towards smectite‐/kaolinite‐dominant assemblages. As no source rock change and no burial effect are detected at that time, the change in clay mineralogy is interpreted as resulting from differences in environmental conditions. The facies analysis shows abruptly and frequently increasing discharges by 6.5 Ma, and could be linked to an increase in seasonality, induced by intensification of the monsoon climate. The major fluvial changes deciphered along the Karnali section have been recognized from central to western Nepal, although they are diachronous. The change in clay mineralogy towards smectite‐/kaolinite‐rich assemblages and the slight decrease of ?Nd(0) have also been detected in the Bengal Fan sedimentary record, showing the extent and importance of the two major events recorded along the Karnali section.  相似文献   

8.
Chinese loess–palaeosol sequences are well known for their records of monsoonal climatic variations. However, the modern processes of dust accumulation and soil formation remain poorly understood. A high‐resolution investigation on modern soils, including the measurement of magnetic susceptibility, particle‐size distribution, total Fe, total organic carbon, CaCO3 content, and optical stimulated luminescence (OSL) dating was carried out on the Zhouyuan loess tableland in the southern Loess Plateau. The results indicate that modern cinnamon soils (luvisols) have developed on contemporarily accumulated aeolian dust during the Holocene. The aeolian loess accumulated during the Younger Dryas was identi?ed in the top part of the Malan Loess that underlay the modern soil by OSL dating and proxy climatic data. It indicates that the Malan Loess accumulated during the last glaciation (marine isotope stages 2–4) does not serve as the parent material for the modern soils. Pedogenesis of the soils started with the increased precipitation and soil moisture that have occurred on the loess tableland since the early Holocene. Precipitation‐driven pedogenesis and organic activities are responsible for the leaching of CaCO3, decomposition of mineral dust and the production of clay and ferromagnetic minerals. Drier intervals have interrupted soil formation several times, and therefore pro?les with multiple soils have been developed at many sites on the loess tableland. At places where soil erosion was relatively strong, either a single soil or welded soils are preserved in the Holocene pro?les. This does not necessarily mean, however, that modern soils over the plateau have been developed without interruption under a constantly warmer, moister climate. This is signi?cant for understanding the surface processes and climatic variation during the formation of the numerous palaeosols over the Loess Plateau in the Quaternary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Micromorphology has important application in earth surface process and landform studies particularly in alluvial settings such as the Indo‐Gangetic Plains (IGP) with different geomorphic surfaces to identify climatic changes and neotectonic events and their influence on pedogenesis. The soils of the IGP extending from arid upland in the west to per humid deltaic plains in the east developed on five geomorphic surfaces namely QIG1 to QIG5 originating during the last 13.5 ka. Four soil‐geomorphic systems across the entire IGP are identified as: (i) the western Yamuna Plains/Uplands, (ii) the Yamuna‐Ganga Interfluve, (iii) the Ganga‐Ghaghara Interfluve, and (iv) the Deltaic Plains. Thin section analysis of the soils across the four soil‐geomorphic systems provides a record of provenance, mineral weathering, pedogenic processes and polygenesis in IGP. The soils over major parts of the IGP dominantly contain muscovite and quartz and small fraction of highly altered feldspar derived from the Himalayas. However, soils in the western and eastern parts of the IGP contain large volumes of fresh to weakly altered plagioclase and smectitic clay derived from the Indian craton. The soils in western Yamuna Plains/Uplands dominated by QIG2–QIG3 geomorphic surfaces and pedogenic carbonate developed in semi‐arid climate prior to 5 ka. However, soils of the central part of the IGP in the Yamuna‐Ganga Interfluve and Ganga‐Ghaghara Interfluve regions with dominance of QIG4–QIG5 surfaces are polygenetic due to climate change over the last 13.5 ka. The clay pedofeatures formed during earlier wet phase (13.5–11 ka) show degradation, loss of preferred orientation, speckled appearance in contrast with the later phase of wet climate (6.5–4 ka). The soils over the deltaic plains with dominance of vertic features along with clay pedofeatures suggest that illuviation of fine clay is an important pedogenic process even in soils with shrink‐swell characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Following recommendations by the 19th Royal Commission on Environmental Pollution, the area, causes and rates of upland soil erosion in England and Wales were investigated between 1997 and 1999. This paper describes the methods and results of the field survey of 1999 in which the extent of eroded ground was determined. 2. The area of degraded soil and the volume of eroded material were both determined from the dimensions of individual erosion features at 399 field sites located on an orthogonal grid across the uplands. Using measurements of individual erosion features, degraded soil extent in upland England and Wales was estimated at almost 25 000 ha, 2·46 per cent of the total upland area surveyed. Half this eroded area was revegetated and no longer subject to continued accelerated soil loss in 1999. The total volume of eroded material was estimated at 0·284 km3. Although deposition of eroded material occurred within 20 per cent of eroded field sites, the total volume of redeposited material was less than 1 per cent of the total volume of eroded soil. 3. Erosion was more extensive on peat soils than on dry, wet mineral or wet peaty mineral soils. In addition, the higher incidence of erosion at high altitudes and on low slopes reinforced the relationship between erosion and areas of peat formation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Dry river beds are common worldwide and are rapidly increasing in extent due to the effects of water management and prolonged drought periods due to climate change. While attention has been given to the responses of aquatic invertebrates to drying rivers, few studies exist on the terrestrial invertebrates colonizing dry river beds. Dry river beds are physically harsh and they often differ substantially in substrate, topography, microclimate and inundation frequency from adjacent riparian zones. Given these differences, we predicted that dry river beds provide a unique habitat for terrestrial invertebrates, and that their assemblage composition differs from that in adjacent riparian zones. Dry river beds and riparian zones in Australia and Italy were sampled for terrestrial invertebrates with pitfall traps. Sites differed in substrate type, climate and flow regime. Dry river beds contained diverse invertebrate assemblages and their composition was consistently different from adjacent riparian zones, irrespective of substrate, climate or hydrology. Although some taxa were shared between dry river beds and riparian zones, 66 of 320 taxa occurred only in dry river beds. Differences were due to species turnover, rather than shifts in abundance, indicating that dry river bed assemblages are not simply subsets of riparian assemblages. Some spatial patterns in invertebrate assemblages were associated with environmental variables (irrespective of habitat type), but these associations were statistically weak. We suggest that dry river beds are unique habitats in their own right. We discuss potential human stressors and management issues regarding dry river beds and provide recommendations for future research.  相似文献   

12.
A comprehensive series of aqueous solutions of four ethylene oxide–propylene oxide–ethylene oxide block copolymers (EPE) of varying concentrations have been prepared. The EPE molecules are amphiphilic with the P blocks providing the hydrophobic segment of the molecules and the E blocks providing the hydrophilic parts. The surface tension of these solutions has been measured and compared with the surface tension of dispersions of soils (a clay soil and a sandy soil) and minerals (quartz–silica sand, bentonite and kaolinite) in the same aqueous solutions. It is observed that all the block copolymers reduce the surface tension of water; the extent to which it is reduced is determined by the surface activity of the EPE block copolymer, which in turn is related to the balance between the sizes of the P and E blocks. It is further observed that the in the presence of soil the surface tension increases as a result of block copolymer adsorption to the soil/water interface. The extent of adsorption appears to be related to the texture of the soil – the clay soil used in this investigation adsorbs more block copolymer than the sandy soil. In the presence of the mineral phases the surface tension reductions are variable. With bentonite the EPE block copolymers are completely adsorbed at low EPE concentrations as shown by surface tension values that are the same as those measured for pure water. Adsorption to kaolinite is limited and once the adsorption sites have been filled the surface tension of the aqueous phase is approaches the surface tension of the same solution without the presence of bentonite. On the other hand the silica sand is a poor adsorbent. Adsorption to the mineral phases is also dependent upon the relative hydrophobicity of the block copolymer. The more hydrophobic (as inferred by the critical micelle concentration) the copolymer the less readily it is adsorbed by the mineral phases. Thus relatively hydrophobic EPE block copolymers produce a relatively large decrease in surface tension and are less readily adsorbed by the soil and mineral phases. It is concluded that the presence of EPE block copolymers in soils can result in the drainage of soil water from the saturated zone as a result of surface tension reductions. However the extent of drainage is related to the surface activity/molecular composition of the EPE block copolymer; the textural class of the soil and the nature of the minerals present in the soil.  相似文献   

13.
Past research has demonstrated the dramatic effects that variations in suspended clay can have on the properties of flow by producing a range of transitional flows between turbulent and laminar states, depending on clay concentration and fluid shear. Past studies have been restricted to kaolinite flows, a clay mineral that has relatively weak cohesive properties. This paper extends these studies to suspension flows of bentonite, a clay mineral that attains higher viscosities at far lower volumetric concentrations within a flow. The results show that the types of transitional flow behaviour recognized in past studies can also be found in bentonite suspension flows, but at lower suspended sediment concentrations, thus demonstrating an even more dramatic effect on flow properties, and potentially on sediment transport and resulting bed morphology, than kaolinite flows. The paper proposes new stability diagrams for the phase space of bentonite flows and compares these to past work on kaolinite suspension flows. These new data suggest that the transitional‐flow Reynolds number can be used to delineate the types of transitional flow across different clay types and assess modern and ancient clay‐suspension flows. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution. The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin. Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite) and smectites/kaolinite ratios are determined as mineralogical indicato  相似文献   

15.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

16.
盐湖中的矿物沉积记录着丰富的环境气候变化信息,是古环境研究的重要对象.在无地表径流补给的盐湖中,其矿物组成及沉积特征与有地表径流补给的湖泊相比是否有一定的特殊性,是值得探讨的问题.采集巴丹吉林沙漠33个不同矿化度地下水补给型湖泊的表层沉积物和10个地表风积砂样品,通过X衍射的方法,分析样品的矿物组成.结果显示:湖泊表层沉积物主要为石英、长石、辉石、云母等碎屑矿物,部分湖泊含有少量的碳酸盐和氯化物盐类矿物.湖泊沉积物的矿物组成与湖水矿化度的关系较为密切,淡水湖仅分布碎屑矿物,微咸水湖含有碎屑矿物和碳酸盐类矿物,盐湖含有碎屑矿物、碳酸盐类矿物和氯化物.风积砂样品中主要为碎屑矿物,占总矿物含量的90%,对湖泊沉积物的矿物组成影响较大,但对湖泊沉积物中的盐类矿物没有贡献,表明湖泊表层沉积物中盐类矿物主要是自生作用形成的.虽然本地区湖泊边缘的沉积物中盐类矿物种类相对较少并且含量较低,但其盐类矿物组成与分布能够响应湖水矿化度的变化,其环境指示意义与有径流补给的盐湖相同,可以指示其湖水的盐度.因此,可以从巴丹吉林沙漠地下水补给型湖泊沉积的盐类矿物中提取相应的古环境信息,用于恢复古气候和古环境的研究.  相似文献   

17.
The clay mineralogy of Tulare Lake sediment was examined to investigate hydroclimatic and environmental changes in the southern Sierra Nevada Mountains (SNM) since the most recent glacial maximum. Evolution of clay mineral assemblages elucidates significant changes in weathering, erosion, and hydroclimatic condition in the catchment. During the last glacial period (24.4–15.1 cal ka BP), low illite content implies less physical erosion of the granitic batholith rocks and a cold and arid environment in the southern SNM. Abrupt increases of illite content at 21.8–20.8 and 17.6 cal ka BP resulted from the glacier advances to the ablation zone and illite-rich glacier flour was transported down to the lake. The gradual increase of smectite induced by progressive depletion of illite-rich glacier flour from 17.6 cal ka BP toward the end of this period indicates climate was beginning to get warm and wet. From 11.9 to 5.3 cal ka BP, two warm and wet periods (10.7–9.4 and 8.2–5.2 cal ka BP) were characterized by high smectite/illite content ratios and low illite crystallinity values, suggesting intensive rainfall precipitation and more physical erosion in the highland and lowland catchment as well as more smectite formation in the terrace soils. Since the last glacial period, physical erosion, in comparison to the chemical weathering, was the dominant process responding to the hydroclimatic change in the Tulare Lake catchment. Moderate to weak chemical weathering was signified by the mostly low illite chemical weathering index of the core sediments. Such results suggest that vegetation cover in the southern SNM was low and limited.  相似文献   

18.
Observations on an Early Quaternary slope deposit in the Massif Central indicated that the texture and mineralogy of this deposit have been seriously altered by post-depositional subsurface weathering. Analyses of clay fractions and water samples show that the montmorillonite present is a stable mineral in this environment and is, and has been, newly formed. As shown by water analyses from nearby sites, the chemical environment is strongly dependent on local factors. Consequently it can be seen that great care should be taken firstly in correlating different slope deposits on the basis of texture and clay mineralogy and secondly in using these parameters as (paleo) climatic indicators.  相似文献   

19.
The first and second members of the Nenjiang Formation (K2n1+2) in the Songliao Basin, northeast China, are an interval of dark-colored mudstone. Paleoenvironmental studies of these strata are useful for understanding the terrestrial environment under a greenhouse climate and hydrocarbon accumulation in lake basins. In this study, clay mineralogy of the K2n1+2 from four borehole or outcrop sections is investigated to understand terrestrial paleoenvironment during the depositional period in the Late Cretaceous. In the mudstone samples, smectite and illite are the predominant clay minerals, and were derived from weathering of parent rocks in a temperate, sub-humid to sub-arid climate; kaolinite and chlorite are minor clay species. The difference in the clay-mineral assemblages between the eastern and western margins of the basin was primarily controlled by provenance lithology, and the high smectite content in the western basin resulted from alteration of volcanic rocks exposed in the Greater Xing’an Range area. The increasing illite content and ratio of illite/smectite percentages in the upper part of the first member of the Nenjiang Formation indicate paleoenvironmental change. This temporal change in the clay-mineral composition was primarily caused by a regionally cooler and drier paleoclimate, consistent with previous paleoenvironmental reconstructions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号