首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total phosphorus and its main forms: dissolved mineral, dissolved organic, particulate organic and particulate mineral in the vertical water column of three subalpine lakes of various types in Italy, has been estimated during the winter-vernal season. The range of variation in the phosphorus content in these waters was as follows: total phosphorus 16 ± 2860 μg/1 PO4, dissolved mineral phosphorus 4 ± 1040 μg/l PO4, dissolved organic phosphorus 1 ± 160μg/l PO4, particulate organic phosphorus 0 ± 290 μg/l PO4 and particulate mineral phosphorus 1 ± 100 μg/l PO4, Generally the content of total phosphorus and dissolved mineral phosphorus (phosphates) increased with the degree of eutrophy with the depth and with the progress of the vernal season towards the summer stagnation time. The amount of phosphates increased in water with the depletion of oxygen, both in the verical water column and with the progress of stagnation time. The amounts of dissolved organic phosphorus decressed with the depth of the vertical water column whereas the dissolved mineral phosphorus increased. The development of the particulate organic phosphorus stratification in the vertical water column was clearly visible in the eutrophic lake. The quantities of total phosphorus and its main component, dissolved mineral phosphorus, decreased evidently from January to May in all three lakes, mostly in the eutrophic lake. The reason of this decrease is sorption by lake sediments and to a certain degree sedimentation of phosphorus sorbed by ferric hydroxide. The increase of dissolved mineral phosphorus and that of total phosphorus in the vertical water column and with the progress of summer stagnation had as a reason the liberation of phosphorus from sediments, and not so much decomposition of sedimentating plankton or dissolved organic phosphorus. The share of single (mean) values of phosphorus forms in the total phosphorus was as follows: In the oligotrophic lake the share of particulate mineral phosphorus was extremely high in March (21% of the total), probably because of the inflow of the melting waters from the drainage area. The development of vertical stratification in waters of three subalpine Italian lakes at the end of the vernal season (May) indicates the quantitative prevailing of dissolved mineral phosphorus with its increase with the depth and domination of dissolved organic phosphorus in the trophogenic zone.  相似文献   

2.
Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (<20 °C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake Lago San Pablo, Ecuador to analyze the basic limnological processes of this lake, which has a tendency for eutrophication. Lago San Pablo is spread over an area of 668 hectares, has a maximum depth of 35 m, and is located 2660 m above sea level. Its thermal stratification is a monomictic one, with only 1–2 °C difference between the epi- and hypolimnion; overturn is achieved by strong winds during the dry summer period. The stratification phase is characterized by an oxygen deficit in the lower part of the hypolimnion. Besides, strong convective currents occur due to nocturnal cooling, and partial lake mixing was observed during the nocturnal period. This type of lake mixing is called atelomixis, which is characterized by the partial mixing of isolated layers (difference in temperature or ionic content) during stratification. The nutrient level of the lake is quite high: mean Ptotal concentration = 0.22 mg/l, mean Ntotal = 1.05 mg/l, soluble reactive phosphorus (SRP) > 0.01 mg/l, and soluble inorganic nitrogen > 0.2 mg/l. Nitrogen and phosphorus are available in the epilimnion all year round (Nsol. inorg·. = 0.3 to 1.7 mg/l N, SRP = 0.04 to 0.63 mg/l P). The N/P ratio is sometimes > 14, sometimes < 10, indicating a variability of the limiting nutrient factor. Considering the nutrient level, the phytoplankton biomass is quite low (about 4,000 cells per ml on average; maximum cell number: 13,000 in 1998 and 10,000 in 1999). The mean epilimnic chlorophyll content (Chl a was 10 mg/l in 1998 and 11 g/l in 1999, and the maximum Chl a content was 16 and 22 g/l in 1998 and 1999, respectively.Phytoplankton production can be limited by nutrients, mainly nitrogen, but convective currents can also cause a significant loss of biomass. The lake's euphotic zone is smaller than its epilimnic zone, indicating that light radiation is limiting in the deeper water body, this is caused by a weak thermocline due to destratification by nocturnal cooling, the atelomixis.  相似文献   

3.
Danube river water samples were saturated with mineral oil, and then the primary production (gross) was determined by means of the light-dark bottle method (oxygen) in situ at depths of 0.1… 1.5 m in comparison with untreated samples. Samples were exposed for half a solar day alternately during the first and second half-days. Investigations carried out between March and October for periods of 14 days showed a mean production of 2.56 g · m?2d?1 O2, which was reduced by 36% due to 12.6 mg/l hydrocarbons. Production decreases with the water depth from 6.2 to 0.9 mg · l?1d?1 02, whereas the inhibition by hydrocarbons increases from 31 to 41%.  相似文献   

4.
The lake without any outlet (11 ha, 55000 m3, zmax 2,25 m) has a weak thermal stratification with maximum surface temperatures of 32.5 °C. The annual variation of temperature and depth of visibility is unimodal, with the maxima or minima in August. Phytoplankton consists mainly of Cyanophyceae. The primary production determined by the light-dark bottle technique (oxygen method) varies in the annual variation between 0.3… 0.5 g m?2 d?1 C (winter) and 3.4… 4.6 g m?2 d?1 C (summer); as the annual means of 1975 and 1976 there were found 1.9 and 2.4 g m?2 d?1 C, resp., gross production at a utilization of 0.42… 2.85% of the radiation energy. The chemism is a well-buffered hydrogen-carbonate water (pH 8.1… 9.0) with 74… 90 mg/1 Na and 20.5… 31.5 mg/1 K and with a good nutrient supply (20… 40 μg/1 PO4—P and 100… 240 μg/1 NO3—N) at the same time.  相似文献   

5.
The Sempachersee (Switzerland), a facultatively oligomictic lake with visibility measuring according to Secchi of between 1.3 m and 12.9 m, is characterized by an oxygen minimum of 4 mg O2/l in the metalimnion in autumn and an almost total lack of oxygen in the greatest depths of the lake. Phosphate-phosphorus is used up in the trophogenic zone and is found in quantities of between 20 and 24 μg/l during the overturn period. Nitrate-nitrogen concentrations of between 0.55 and 0.6 mg/l are also present during overturn. Phanerogamic growth along the shore is sparse; the variety of animal species as well as the respective number of organisms are limited although the reason for this has not been determined.   相似文献   

6.
Lake Jaisamand near Udaipur (Rajasthan) is one of the oldest man-made lakes in India. The primary productivity of the lake showed a bimodal pattern with a first peak of a higher magnitude in July (7.605 g/m2d C) and the second of a lower magnitude (5.851 g/m2 dC) in December. The minimum production was 2.455 g/m2 dC in November. The chlorophyll values were high during low water levels of summer and low during monsoon months when the water level rises, thereby dispersing the phytoplankton biomass and decreasing its density per unit of water volume. From the results obtained it appears that beside temperature and transparency, the trophogenic area and seasonal water level fluctuations have a considerable influence on the primary productivity in this lake. Based on annual production rates and chlorophyll values lake Jaisamand could be regarded as an eutrophic waterbody.  相似文献   

7.
The Holocene record of Lake Lugano (southern basin: surface area 20.3 km2, maximum depth 87 m) comprising organic carbon-rich sediments (sapropels), is divided into eight intervals based on radiocarbon- and varve-dating. The content of organic carbon, inorganic carbon, and biogenic silica, as well as the benthic remains of ostracods and oligochaetes, are converted into accumulation rates and benthic abundances in order to assess past production rates and bottom water oxygen status, respectively. The results suggest three periods of distinct palaeolimnological character: (i) low primary production combined with shifts between aerobic and anaerobic profundal conditions (prior to ca. 3000 BC), (ii) moderate rates of production combined with a relatively high profundal oxygen content (after ca. 1500 BC), and (iii), high production rates (460 g C m–2 a–1) combined with anaerobic profundal conditions (present eutrophic state). Corresponding organic carbon contents in the sediments are: up to 5% (i), 4% (ii), and 8% (iii). Until the beginning of this century, the flux of autochthonous sediments to the lake floor correlated with the fluctuations in the allochthonous sediment accumulation rate, indicating that catchment erosion largely controlled lacustrine production during the Holocene history of Lake Lugano. Pollen data show catchment-vegetational transformations at ca. 3500 BC (change from fir to beech forests), at 1400 BC (onset of cereal vegetation) and at ca. A.D. 450 (strong increase in various cultural plants). The first two changes had a relatively large imprint on lacustrine sedimentation. At ca. 3500 BP, erosion increase in the catchment was triggered by vegetation changes in the mountain zone above ca. 1000 m a. s. l., which may have been induced by climatic and human alteration (drop in the treeline altitude). Maximum catchment erosion occurred at ca. 1400 BC which was clearly dominated by human cultivation during the Bronze Age. More oxygenated profundal conditions in the lake after ca. 3000 BC are possibly related to a better mixing of the lake waters during the winter season by increased wind activity.  相似文献   

8.
The daily primary production in lake Lucerne (47° n latitude) was determined at different depths at approximately monthly intervals between 22 July 1969 and 8 May 1970, by summing up series of short term measurements made during each day, using the C14 method. Simultaneously irradiant energy and attenuation of light in the water was measured. It is shown that, considering the photosynthesis-light response the trophogenic layer of the lake can be assumed as homogeneous only from mid October to the end of March. Different known models to estimate daily surface production rates are compared with direct measurements and a new numerical model is described which allows daily production as a function of depth to be calculated. A method is presented which converts the production rate per unit of surface area measured during a standard exposure time to the daily production rate.   相似文献   

9.
A comprehensive hydrochemical and microbiological study was conducted in Lake Mogil'noe. The vertical hysrochemical structure of the lake was analyzed. Large amounts of mineral compounds containing biogenic elements and their organic forms are shown to accumulate in the anaerobic zone of the lake. An abrupt increase in the concentration of Corg is recorded in the near-bottom layer, where it is almost an order of magnitude higher than that in the anaerobic zone of the Black Sea at a depth of 2000 m. All the processes are found to be most rapid in the boundary layer between the aerobic and anaerobic zones (8.25–9.25 m), where the primary production attains its maximum, the concentration of sulfates abruptly increases relative to the aerobic and anaerobic zones, microorganism population is maximum, as are the rates of sulfate reduction and glucose consumption by heterotrophic organisms.  相似文献   

10.
Prealpine Lake Lungern shows in spite of low primary production rates (120 g C/m2. year) and full winter overturns a complete oxygen depletion in the deepest hypolimnion (65–70 m below surface) towards the end of summer stagnation. Periodical examinations of O2- and CH4-concentrations, CH4-oxidation rates and temperature in the water column during 1975/76 enabled an O2-balance of Lake Lungern. The direct measurement of the CH4-flux at the sediment-water-interface and of the CH4-concentrations in sediment cores as well as the determination of the age of methane bubbles lead to the conclusion, that the hypolimnic oxygen depletion is partly due to the oxidation of fossile methane penetrating the lake from below.   相似文献   

11.
三峡水库香溪河初级生产力及其影响因素分析   总被引:1,自引:1,他引:1  
2013 2014年采用黑白瓶测氧法对香溪河不同站点(上、中、下游及其支流库湾)和不同水深(0.5、1.0、2.0、5.0和10.0 m)的初级生产力进行原位测定.结果显示:(1)三峡水库蓄水后香溪河水域初级生产力具有显著的空间差异,支流和上游的总初级生产力大于中、下游,下游的初级生产力水平最低;初级生产力随着水深增加呈现逐渐减少的趋势;(2)初级生产力具有显著的季节差异,春、夏季显著高于秋、冬季;(3)光照强度、水温和天气对初级生产力有显著影响,水体叶绿素浓度与初级生产力极显著相关.结果显示,蓄水后改变的水文情势将香溪河的初级生产划分为明显不同的两个区域,水动力条件成为影响初级生产力的重要因子;依据初级生产力判断香溪河为富营养、自养代谢型水体.  相似文献   

12.
In the dimict lake Arend (5.1 km2, 146 hm3, 49.5 m zmax), nitrogen is production-limiting with concentrations below the detection limit during the production period. Phytoplankton achieves biomasses of up to 18 mg/l fresh matter, essential contributions being made by Aphanizomenon with 2 mg/l and Anabaena with up to 10 mg/l. Nitrogen fixation was measured by the ethine reduction technique (acetylene reduction) during periods of the occurrence of heterocystforming Cyanophyceae and achieved peak values up to 6.59 μg N2 · h?1 · l?1 or 14.87 m?2 · h?1 g N2 · m?2 · h?1. The rates of fixation show a safe correlation with the biomass of heterocyst-containing Cyanophyceae (r = 0.88), their development beginning at values below the N : P-ratio of 2.66.  相似文献   

13.
Monthly collections of phytoplankton were supported by physical–chemical data and measures of chlorophyll a concentrations in the search for particular environmental factors that could explain the constant presence of desmids in a Mexican tropical lake, a characteristic not common among the phytoplanktic communities of Mexican lakes. Samplings were taken from the water column in the deepest part of the lake (40 m) and intensified in the metalimnetic zone, whose establishment was monitored by observations of temperature and oxygen profiles. The general behavior of Lake Zirahuén was typical of warm monomictic tropical lakes at high elevation: a short mixing phase during the hemispheric winter. The depth of ZMIX and Zeu revealed a well-illuminated epilimnion, suggesting that phytoplankton communities are not likely to be light-limited. The oligotrophic nature of the lake is indicated by discrete concentrations of inorganic nutrients, PTOT in the interval of 0.01–0.03 mg l−1 and chlorophyll a between 0.23 and 3.98 μg l−1. These characteristics together with a low concentration of calcium, define a lacustrine environment different from other Mexican lakes, and one that could be suitable for desmids communities.  相似文献   

14.
The medium shallow lake Grimnitzsee (maximum depth: 9.9 m; mean depth: 4.6 m; area: 7.7 · 106 m2) which is situated in the biosphere reserve “Schorfheide-Chorin” in northern Brandenburg (Germany) was studied in 1994 and 1995. A bathymetric map of Grimnitzsee is given for the first time. The lake is usually polymictic although in 1994 and 1995 relatively long summer stratification was observed due to very high global radiation input. Nutrient concentration, light climate, oxygen status, phytoplankton biomass and the species composition of littoral diatoms characterize the lake as eutrophic. Special features deducible from the lake's polymictic character were the multiple development of aerobic or anaerobic strata above the sediment, the fast recovery of silicon concentration in the water column after diatom sedimentation, the importance of resuspension for the success of planktonic diatom populations, and an only moderate correlation between chlorophyll a concentration and light attenuation as well as seston dry weight probably due to the influence of suspended particles.  相似文献   

15.
Williams Lake, Minnesota is a closed‐basin lake that is a flow‐through system with respect to ground water. Ground‐water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore‐water samplers (peepers) were used to characterize solute fluxes at the lake‐water–ground‐water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore‐water depth profiles of the stable isotopes δ18O and δ2H were non‐linear where ground water seeped into the lake, with a sharp transition from lake‐water values to ground‐water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from δ2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore‐water calcium profiles to pore‐water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40–50 % of the calcium in Williams Lake is retained, the pore‐water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore‐water depth profiles of calcium and δ18O and δ2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake‐water–ground‐water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Supraglacial Imja Lake (lake level, 5010 m a.m.s.l.), Khumbu, Nepal Himalaya, has increased its size on the tongue of Imja Glacier since the 1950s. In order to clarify the mechanism of the lake expansion, the physical conditions, water budget and heat budget of the lake were examined by measuring water temperature, water turbidity, lake level, meteorology and water discharge. These measurements were carried out in the monsoon season of July 1997, when the glacier melt occurred in the ablation area with air temperature of more than 0°C. Density stratification in the lake is built up by an effect of water pressure on lake water, but, neglecting the effect, lake water density is defined by suspended sediment concentration rather than temperature. Glacier-melt water from the subaqueous part of the glacier terminus mixed with lake surface water of 4–8°C, and diffused the water of about 3°C into the deeper zone of the lake. This advective, thermal diffusion occurs by sediment-laden underflow and relatively clear density interflow. The sediment-laden underflow is induced by intermittent glacier-melt sediment discharge at the terminus, while the density interflow is probably produced by continuous glacier-melt water discharge. Calculation of water budget of the lake indicates that meltwater inflow at the glacier terminus and surface water outflow at the outlet determine the hydrological conditions of the lake. The net heat transfer by melting of the terminal ice and dead ice, connected to the lake expansion, was evaluated by calculating the heat budget of the lake.  相似文献   

17.
We investigated the importance of meteorological and lake physical conditions for temporal, horizontal and vertical differences in the concentration of dissolved oxygen (DO) and water temperature, and the derived daily estimates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP). Our study was conducted in a subtropical and polymictic lake in Southern Brazil, during a spring–summer transition. Metabolic rates were determined from two sites using the open water oxygen technique. At the central deep site, oxygen sondes were deployed at three depths to assess patterns in vertical variability. During 10 days, an additional DO and temperature sonde was placed near the shoreline allowing us to compare metabolic differences in the surface layers between the central pelagic and littoral site. While GPP was similar, R was significantly higher at the shallower littoral site, causing NEP to be lower, although NEP was still positive. The littoral site had less diel changes in DO and higher daily variability in all metabolic rates. Variability in GPP and R at the littoral site was related to temperature, wind speed and rainfall suggesting that short-term variability in metabolic rates in shallow areas are sensitive to resuspension of sediments caused by a less stable water column. A clear vertical gradient was furthermore found for the metabolic rates at the central deep part of the lake, related to the light extinction, with highest GPP around 0.3 m and decreasing with depth, while respiration showed the inverse pattern. Below subsurface, respiration prevailed at 5.0 m depth and was uncoupled to primary production. Under conditions with high light and temperature, and low wind speeds, the mixing depth became shallower, in turn increasing the water column stability at the deep pelagic site, which resulted in higher mean light available and higher GPP in the water column. Our results confirm that deployment of sensors in different sites and depths allows for spatially, as well as temporally more representative estimates of lake metabolism.  相似文献   

18.
Biologically configured ββ-hopanes, geologically configured αβ-hopanes and the biogenic hopenes were determined in dated sediment cores from Lake Fuxian in SW China and Lake Changdang in Eastern China in order to investigate anthropogenic influences on the abundance, composition and provenance of hopanoid hydrocarbons in lake sediments. Based on the results, hopenes were prevalent, with maximum values reaching 148.9 μg g−1 TOC in sediments of Lake Fuxian, an oligotrophic deep lake (average depth 89.6 m), where the long water column provided ample potential for the growth of hopene-producing bacteria especially the cyanobacteria. Sediment hopenes have diminished in abundance to values of 13.4–78.5 μg g−1 TOC in Lake Changdang, a eutrophic shallow (average 0.8–1.2 m) body, reflecting comparatively reduced importance of nutrient level on hopene production. Historical trends in hopenes input to the sediments of each lake are strongly dependent on nutrient status. During the last few decades, human-induced eutrophication has greatly boosted bacterial production, enhancing the accumulation of hopenes in sediments. Inputs of petroleum-derived αβ-hopanes were exceptionally high (average 71.2 μg g−1 TOC) in post-1968 sediments from Lake Changdang, their increase coinciding with the advent and acceleration of petroleum product use around the lake, in particular by fishing boats. Lake Fuxian on the other hand, has undergone slower economic development and the appearance of petroleum-derived αβ-hopanes in sediments was delayed to 1990 since when the average value has been 27.1 μg g−1 TOC. The abundance of αβ-hopanes in Lake Changdang has created a marked decrease in the relative contribution of hopenes to total hopanoids since 1968. Conversely, the amounts of αβ-hopanes introduced to Lake Fuxian since 1990 has yet to yield a clear change in the overall proportion of hopenes, but the abundance of ββ-hopanes has declined relative to total hopanoid levels for the period.  相似文献   

19.
Lake metabolism scales with lake morphometry and catchment conditions   总被引:1,自引:0,他引:1  
We used a comparative data set for 25 lakes in Denmark sampled during summer to explore the influence of lake morphometry, catchment conditions, light availability and nutrient input on lake metabolism. We found that (1) gross primary production (GPP) and community respiration (R) decline with lake area, water depth and drainage ratio, and increase with algal biomass (Chl), dissolved organic carbon (DOC) and total phosphorus (TP); (2) all lakes, especially small with less incident light, and forest lakes with high DOC, have negative net ecosystem production (NEP < 0); (3) daily variability of GPP decreases with lake area and water depth as a consequence of lower input of nutrients and organic matter per unit water volume; (4) the influence of benthic processes on free water metabolic measures declines with increasing lake size; and (5) with increasing lake size, lake metabolism decreases significantly per unit water volume, while depth integrated areal rates remain more constant due to a combination of increased light and nutrient limitation. Overall, these meta-parameters have as many significant but usually weaker relationships to whole-lake and benthic metabolism as have TP, Chl and DOC that are directly linked to photosynthesis and respiration. Combining water depth and Chl to predict GPP, and water depth and DOC to predict R, lead to stronger multiple regression models accounting for 57–63% of the variability of metabolism among the 25 lakes. It is therefore important to consider differences in lake morphometry and catchment conditions when comparing metabolic responses of lakes to human impacts.  相似文献   

20.
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (São Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号