首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this article, the effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions is investigated. For this purpose, four finite element models of dam–reservoir–foundation interaction system are prepared by using the Lagrangian approach. In these models, the reservoir length varies from H to 4H (H: the height of dam). The Folsom gravity dam is selected as a numerical application. Two different ground motion records of 1989 Loma Prieta earthquake are used in the analyses. One of ground motions is recorded in near fault; the other is recorded in far fault. Also, the two records have the same peak ground acceleration. The study mainly consists of three parts to assess the effects of reservoir length on the seismic performance of the concrete gravity dam. In the first part, the linear time-history analyses of the four finite element models prepared for the Folsom gravity dam are performed. In the second part, the seismic performance of the dam is evaluated according to demand–capacity ratio and cumulative inelastic duration. Finally, the nonlinear time-history analyses of the finite element models of the dam are carried out by using Drucker–Prager yield criteria for dam concrete. It is seen from the analyses results that the seismic behavior of the concrete gravity dams is considerably affected from the length of the reservoir. The reservoir length of 3H is adequate for concrete gravity dams. The selection of ground motion is on of the important parts of seismic evaluation of gravity dams. Also, the frequency characteristics of the ground motion having the same peak ground acceleration affect the seismic performance of the dam. The near-fault ground motions are generally creates more stress on the dam body than far-fault ground motions. The used performance approach provides a systematic methodology for assessment of the seismic performance and necessity of nonlinear analyses for dam systems.  相似文献   

2.
Shan  Yibo  Chen  Shengshui  Zhong  Qiming  Mei  Shengyao  Yang  Meng 《Landslides》2022,19(6):1491-1518

The existing empirical models do not consider the influence of material composition of landslide deposits on the peak breach flow due to the uncertainty in the material composition and the randomness of its distribution. In this study, based on the statistical analyses and case comparison, the factors influencing the peak breach flow were comprehensively investigated. The highlight is the material composition-based classification of landslide deposits of 86 landslide cases with detailed grain-size distribution information. In order to consider the geometric morphology of landslide dams and the potential energy of dammed lakes, as well as the material composition of landslide deposits in an empirical model, a multiple regression method was applied on a database, which comprises of 44 documented landslide dam breach cases. A new empirical model for predicting the peak breach flow of landslide dams was developed. Furthermore, for the same 44 documented landslide dam failures, the predicted peak breach flow obtained by using the existing empirical models for embankment and landslide dams and that obtained by using the newly developed model were compared. The comparison of the root mean square error (Erms) and the multiple coefficient of determination (R2) for each empirical model verifies the accuracy and rationality of the new empirical model. Furthermore, for fair validation, several landslide dam breach cases that occurred in recent years in China and have reliable measured data were also used in another comparison. The results show that the new empirical model can reasonably predict the peak breach flow, and exhibits the best performance among all the existing empirical models for embankment and landslide dam breaching.

  相似文献   

3.
Temporary dams can be formed by the sudden injection of debris flow into main streams by some favorable geomorphologic and hydraulic conditions, resulting in extensive inundations upstream and catastrophic floods downstream due to dam breaches and consequently dramatic changes of channels and valleys. Expeditious means of assessing dam-forming potential are necessary, particularly in geologically active regions. Complete blockages or dam formations are significantly related to the discharge ratio and velocity ratio between the tributary and the main stream, the bulk density of the debris flow, confluent angles and the degree of unevenness of grain sizes. In order to set up a critical index/C for dam formation, 19 groups of flume tests were conducted. The results showed that there were three types of blockage in the intersections, and dam-forming processes were mainly controlled by the product of the dimensionless momentum ratio and the degree of unevenness of grain sizes in the debris flow. Complete blockages or dam formations occurred when C > 83.4, whereas semi-blockages were formed or no dams were formed when C < 71.5, which had been judged to be feasible by historical instances of dam formation in China. Dam failures commonly resulted from overtopping. No piping was observed in the course of dam failure, and the time elapsed between dams can be denoted by a linear relation with the momentum ratio.  相似文献   

4.
Sardinia is one of the Italian regions with the greatest number of dams per inhabitants, almost 60 for a population of only 1.5 million people. Many of these dam sites are located on non-carbonate rocks along the main rivers of the Island and their waters are used for irrigation, industrial, energy supply, drinking and flood regulation purposes.The Pedra 'e Othoni dam on the Cedrino river (Dorgali, Central-East Sardinia) is located along the threshold of the Palaeozoic basement on the Northern border of the Supramonte karst area, where water is forced to flow out of the system through several resurgences, the most famous of which is the Su Gologone vauclusian spring, used for drinking water supply. The other main outflows of the system, Su Tippari and San Pantaleo springs, are at present almost permanently submerged by the high water level of the Pedra 'e Othoni dam. In the near future water will be supplied also to other communities with a possible increase of water taken from the spring.The dam, originally meant to regulate the flooding of Cedrino river but actually used for all sorts of purposes (electricity supply, drinking water, irrigation of farmlands, industrial uses), has a maximum regulation altitude of 103 m a.s.l., only slightly less than a meter below the Su Gologone spring level (103.7 m), and 4 and 9 m respectively above the submerged Su Tippari and San Pantaleo springs.During floods of the Cedrino river, occurring on average twice a year, also the Su Gologone spring becomes submerged by the muddy waters of the lake for a time ranging between a couple of hours up to several days, making water supply impossible.The analysis of the available meteorological and hydrogeological data relative to the December 2004 flood, one of the severest of the past 100 years, suggests that the reservoir is filled in a few days time. Several flooding scenarios have been reconstructed using digital terrain models, showing that backflooding submerges most of the discharge area of the aquifer, having important repercussions also on the inland underground drainage system. The upstream flood prone areas prevalently comprise agricultural lands with some sparse houses, but also highly frequented tourist facilities. Fortunately flooding occurs outside the tourist season, thus limiting risk to a limited number of local inhabitants. Massive discharge at the dam site, instead, determines a more hazardous situation in the Cedrino coastal plain, where population density in low lying areas is much higher. To avoid flooding hazard upstream the water level in the lake should be regulated, keeping it low in the flood prone seasons, and having it filled from the end of the winter in order to have enough water stocked before the beginning of the summer. Discharge at the dam site, instead, should be done cautiously, preventing severe flooding of the coastal Cedrino plain.  相似文献   

5.
Three dynamic centrifuge models were tested to obtain data for safety evaluation of the Jen-Yi-Tan Dam in Taiwan subject to a strong earthquake. In these tests, recorded 1999 Chi-Chi earthquake ground motions were modified and used on the electro-hydraulic shaking table mounted on the 400 g-ton centrifuge at the University of Colorado at Boulder. All tests were conducted under centrifugal acceleration of 150 g, and the input acceleration was scaled accordingly in order to simulate the given earthquake. A rigid container and water as pore fluid were used in the tests. In both Models 2 and 3, no sign of soil liquefaction was observed in the tests although a noticeable amount of settlements were found from the earth dam cross-section profile after testing.  相似文献   

6.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   

7.
Stability of landslide dams and development of knickpoints   总被引:2,自引:0,他引:2  
The Wenchuan earthquake triggered many landslides and numerous avalanches and created 100 odd quake lakes. The quake lakes may be removed or preserved. The removal strategy was applied to several large landslide dams, which were dangerous because massive amounts of water pooled up in the quake lakes. The dams could eventually fail under the action of dam outburst flooding, potentially endangering the lives of people in the downstream reaches. This paper studied the stability of landslide dams and the development of knickpoints by field investigations and experiments, and analyzing satellite images. The study concluded that if landslide dams were preserved, they would develop into knickpoints and act as a primary control of riverbed incision and, thus, reduce the potential of new landslide. The stability of landslide dams depends mainly on the development of the step-pool system and stream power of the flood flow. If a landslide dam consists of many boulders, a step-pool system may develop on the spillway channel of the dam, which would maximize the resistance, consume most of the flow energy and consequently protect the dam from incision. The development degree of the step-pool system is represented by a parameter S p, which was measured with a specially designed instrument. A preservation ratio of landslide dams is defined as the ratio of preserved height after flood scouring to the original height of the dam. For streams with peak flood discharge lower than 30 m3/s, the preservation ratio is linearly proportional to S p. For rivers with a peak flood discharge higher than 30 m3/s (30–30,000 m3/s), the minimum S p value for stable channel increases with log p, in which p is the unit stream power. For a landslide dam with a poorly developed step-pool system, S p is smaller than the minimum value and the outburst flood incises the spillway channel and causes failure of the dam. For preserved landslide dams, sediment deposits in the quake lakes. A landslide dam may develop into a knickpoint if it is stabilized by long-term action of the flow. Large knickpoints can totally change the fluvial processes and river morphology. Uplift of the Qinghai–Tibetan Plateau has caused extensive channel bed incision along almost all rivers. For many rivers, the incision has been partly controlled by knickpoints. Upstream reaches of a knickpoint have a new and unchanging base level. This brings about a transition from degradation to aggradation and from vertical bed evolution to horizontal fluvial process. Multiple and unstable channels are prominent in the reaches, upstream of the knickpoints. If hundreds of landslide dams occurred simultaneously on a reach of a mountain river, the potential energy of bank failure and the slope erosion would be greatly reduced and sediment yield from the watershed may be reduced to nearly zero. The quake lakes may be preserved long term and become beautiful landscapes. Streams with long-term unfilled quake lakes have good aquatic ecology.  相似文献   

8.
Beydag dam is under construction on Kucukmenderes River for irrigation purposes. Due to the scarcity of core material and liquefaction of alluvium at the dam site, the original design was changed to Roller Compacted Concete (RCC) from rockfill dam with claycore. Although the new design was safer, it nearly doubled the cost of the dam, so the owner, State Hydraulic Works of Turkey, (DSI) set out to find more economical but equally safe alternative. Since jet-grouting is a cheap ground improvement tool in Turkey, such an alternative was developed for the ground improvement against liquefaction together with concrete face rockfill dam sitting on top of improved ground. This paper presents a detailed discussion of how the new alternative was developed and evaluated: it discusses the determination of jet grouting pattern, the placement of jet grouted blocks, and the assesment of liquefaction. On one hand the soil cement strength of jetgrout columns, internal friction angle of alluvium and rockfill were important in determining the dimensions of the blocks, on the other hand the location of the blocks were highly affected by the areas where liquefaction occurred. One of the most important parameter that has a considerable influence in delineating the boundary betweeen liquefaction and non-liquefaction was the value of stress reduction coefficient (r d), being primarily sensitive to the weight of overburden, which is calculated by the height from the face of dam to the depth where the calculation was made. This approach is justified by two-dimensional ground response analysis. Most importantly, this paper shows that there exists an alternative solution for building dams on the liquefaction prone sites without removing alluvium by using a well known jet grouting technique for improving ground at only selected places.  相似文献   

9.
Phytoplankton seasonal and interannual variability in the Guadiana upper estuary was analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future.  相似文献   

10.
In this paper, the dynamic characteristics of a liquefiable silt substratum within the foundation soil of a reservoir dam in the Tianjin area are investigated by means of standard penetration resistance and dynamic triaxial tests. Properties including N-values, factors influencing liquefaction as a cyclic stress, consolidation pressure, structure, and particle composition are considered in this research. Parameters used to evaluate liquefaction potential are obtained through testing. A comprehensive program based on the Chinese code and standard for geological investigation (Ministry of Water Resources of China 1999a; Ministry of Construction of China 2001a) and Seed’s simplified method (Seed and Idriss 1971; in J Geotech Eng Div ASCE 109(3): 458–482, 1983) was carried out to evaluate the potential of liquefaction within the reservoir dam foundation. Liquefaction potentials were also assessed in response to the Chinese codes for seismic design (Hydropower Research Institute of China 2000; Ministry of Construction of China 2001b). The evaluation shows that saturated surface silt in the reservoir dam foundations is vulnerable to liquefaction at seismic intensities of VII and above. The two assessment methods are in good agreement with each other, and the research results can provide useful information for the safe construction and normal operation of the reservoir.  相似文献   

11.
This paper presents the results of engineering geological investigations and tunnel support design studies, carried out at the Sulakyurt dam site, northeast of Ankara, Turkey. The Sulakyurt dam will be used for flow control and water storage for irrigation projects. Studies were carried out both in the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. The diversion tunnel will be driven in rock mass, consisting of granite and diorite. Empirical, analytical and numerical methods were combined for safe tunnel design. Rock mass rating (RMR), Rock mass quality (Q) and Geological strength index (GSI) systems were used for empirical rock mass quality determination, site characterization and support design. The convergence–confinement method was used as analytical method and software called Phase2, a 2D finite element program, was utilized as numerical method. According to the results acquired from the empirical, analytical and numerical methods, tunnel stability problems were expected in both granite and diorite rock masses. The support system, suggested by empirical methods, was applied and the performance of suggested support system was evaluated by means of numerical modelling. It was concluded that the suggested support systems were adequate, since after applying the suggested support system to granite and diorite, tunnel deformation and the yielded elements around the tunnel decreased significantly. Thus, it is suggested that for more reliable support design empirical, numerical and analytical methods should be combined.  相似文献   

12.
The Wenchuan earthquake, measured at M s 8.0 according to the China Earthquake Administration, occurred at 14:28 on 12 May 2008 in the Sichuan Province of China. It brought overwhelming destruction to eight provinces and cities. Landslides and rock avalanches triggered by the earthquake produced 257 landslide lakes which were distributed along the fault rupture zone and river channels. The authors traveled to the disaster zone immediately after the earthquake to examine some of the features of the debris dams and performed a quick evaluation of the potential for outburst of earthquake-induced landslide lakes for the purpose of disaster relief. The preliminary analysis indicated that the landslide lakes could be classified as those exhibiting extremely high risk, medium risk, and low risk according to field observations and remote sensing, to determine material composition, dam structure, dam height, maximum water storage capacity, and size of the population potentially affected area. The failure risk of 21 debris dams were evaluated as follows: one dam with an extremely high danger risk, seven dams with a high danger, five dams with a medium danger, and eight dams of low danger. More concern was given to the Tangjiashan Lake and different scenarios for the potential sudden failure of its dam were assessed. The risk evaluation result was accepted in full, by the earthquake disaster relief office. A successful emergency dam treatment for risk reduction was planned, based on our assessments, and these measures were quickly carried out. According to this research, the earthquake destabilized the surrounding mountains, resulting in a prolonged geohazard for the area. Landslides and debris flows will continue to develop for at least 5 to 10 years after the Wenchuan earthquake and will produce additional dammed lakes. Recommendations and plans for earthquake–landslide lake mitigation were proposed, based on past successful practices.  相似文献   

13.
Electrical resistivity survey and the geotechnical SPT blow counts (N value) method were simultaneously analyzed to investigate the stability of a center-core type earth-fill dam against the seepage phenomenon. The coupling of these heterogeneous field methods provided a chance to understand the status of underground material by comparing the geophysical and geotechnical view. The analysis shows that the zones with low resistivity value generally have low N value, which means low stiffness. However, some zones with a high resistivity pattern are not accompanied by an increase of its N value, and are even showing a lower N value. These results imply that one should be careful to directly correlate resistivity value with the real status of the core material of a fill dam. And a highly resistive zone may be in poor status due to the effect of increase of resistivity value as a result of the piping condition. Additional laboratory tests show that there is a deficiency of fine soil particles believed as the clay at the troubled region, which means an increase in resistivity value. Therefore, multiple explorations should be planned to reduce the uncertainty in application of geophysical methods to dam safety evaluation in order to compensate the resistivity information of core material.  相似文献   

14.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

15.
某坝基为砂卵石基础,其下为强风化基岩,坝基渗漏和左右岸绕坝渗漏是该水库坝基存在的主要地质问题。为此,采取了塑性混凝土防渗墙与双排帷幕灌浆相结合的综合防渗措施。为了检测水库坝基及塑性混凝土防渗墙施工质量,防止水库正常蓄水后发生渗漏,选用了高密度电法进行无损检测。工程采用温纳施伦贝尔法观测,分别采用5m和10m电极间距,电极数60个,剖面数16。依据5m和10m道距实测视电阻率剖面与反演结果的解释,对水库坝基和防渗墙的工程质量进行了评价,认为-25m桩号塑性混凝土防渗墙可能存在渗漏问题,-80m桩号对应一低阻异常,坝体可能存在渗漏通道;其余部位未发现明显异常。  相似文献   

16.
Stability analysis of Llerin Rockfill Dam: An in situ direct shear test   总被引:1,自引:0,他引:1  
This paper analyzes the stability of the Llerin rockfill dam using Barton–Kjaernsli's shear criterion. To fit the parameters of this criterion, a direct shear test was designed that allows in situ calculation, using large-size samples of the shear stress at which failure is produced for different normal loads. These experimental values are then used to obtain more reliable values for the friction angle and the equivalent roughness of the rockfill material.The rockfill of Llerin dam is formed by a suitably ground gonfolite limestone rockfill that serves as a contention dam for a lagoon of mine tailings. The experimental results obtained in in situ tests were compared with those predicted by the shear criterion, subsequently determining the safety coefficient of the rockfill dam using the SLOPE computer program. We conclude that the values estimated via in situ testing permit the behaviour of the containment dam to be predicted more accurately.  相似文献   

17.
The Mike Horse Mine tailings dam in western Montana was partially breached in 1975 due to heavy rainfall and a failed drainage bypass. Approximately 90,000 tons of metal and arsenic-enriched tailings flowed into Beartrap Creek and the Blackfoot River. The spatial distribution of trace elements As, Cd, Cu, Mn, Pb, and Zn in floodplain alluvium of the upper Blackfoot River were examined along 20 transects in the upper 105 river kilometers downstream from the tailings dam. Trace element concentrations decrease with distance from the failed dam, with As reaching background concentrations 15 km from the Mike Horse dam, Cd and Pb at 21 km, Cu at 31 km, and Mn and Zn at 37 km. Distance from the Mike Horse tailings dam and mine area is the dominating factor in explaining trace element levels, with R 2 values ranging from 0.67 to 0.89. Maximum floodplain trace element concentrations in the upper basin exceed US. EPA ecological screening levels for plants, birds and other mammals, and reflect adverse hazard quotients for exposure to As and Mn for ATV/motorcycle use. Trace element concentrations in channel bank and bed alluvium are similar to concentrations in floodplain alluvium, indicating active transport of trace elements through the river and deposition on the floodplain. The fine fraction (<2 mm) of floodplain alluvium is dominated by sand-sized particles (2.0–0.05 mm), with Cu and Mn significantly correlated with silt-sized (0.05–0.002 mm) alluvium. Ongoing remediation in the headwaters area will not address metal contamination stored downstream in the channel banks and on the floodplain. Additionally, some trace elements (Cu, Mn and Zn) were conveyed farther downstream than were others (As, Cd, Pb).  相似文献   

18.
Earthquake-induced deformations for a bridge approach earth embankment are predicted using a calibrated numerical model. The constitutive soil model is a modified hyperbolic model that uses Masing rules and incremental pore pressure relations. The model was calibrated using both laboratory and field data. A shaking table physical model was used to verify the numerical simulation. Additionally, the upper San Fernando dam was modeled to reproduce the deformations in the 1971 earthquake. The subsurface and embankment soil conditions were characterized using field and laboratory methods. The model developed was used to predict the earthquake-induced deformations of an approach embankment to Bridge A1466 in the NMSZ near Hayti, Missouri, where strong earthquakes M > 7.0 are anticipated in the next 50 years.  相似文献   

19.
This paper presents the numerical and experimental investigation of a dam foundation. The site consists of granite and especially weathered granite. Numerical and analytical analyses have been conducted to evaluate suitability of the granite for a dam foundation. Mohr–Coulomb failure criterion has been used to calculate the compressive strength of the rock mass. Finite element implementation of Mohr–Coulomb criterion has been used for deformation and settlement analysis. Packer testing and in-situ estimation of rock mass deformability using the Goodman jack have been performed. The results of the evaluations show that very small normal and differential settlements can be expected in structural regions due to dam construction, and the compacted concrete dam can safely be constructed on either the competent granite or the weathered granite. However, the dam foundation on the weathered granite has high conductivity potential problems for the reservoir.  相似文献   

20.
Settlement is one of the most important deformation characteristics of a high concrete-face rockfill dam (CFRD) and is regarded as a key indicator of dam safety. The time-dependent settlement behavior of the Shuibuya CFRD is studied on the basis of in situ settlement-monitoring records and displacement back-analysis. The goal of this work is to characterize actual deformation of the dam and to verify the back-analysis method used in this paper. The settlement-monitoring records were from seven control stations at the crest and 38 monitoring points inside the body of the dam and covered the construction period, the initial filling of the reservoir and 2 years of operation. A displacement back-analysis for parameters is performed by hybrid generic algorithms (HGAs) and finite element method (FEM). Comparative studies of monitoring data and back-analysis show good agreement between measured settlements and computed settlements. Furthermore, the deformation in the next 3 years is predicted on the basis of back-analysis. Overall, it is demonstrated that the deformation of the Shuibuya CFRD is basically stable and that the technique used to control the dam deformation is successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号