首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Shear building representations of seismically isolated buildings   总被引:2,自引:0,他引:2  
Seismic isolation, with its capability of reducing floor accelerations and interstory drifts simultaneously, is recognized as an earthquake resistant design method that protects contents of a building along with the building itself. In research studies, superstructures of seismically isolated buildings are commonly modeled as idealized shear buildings. Shear building representation corresponds to an idealized structure where the beams are infinitely stiff in flexure and axially inextensible; columns are axially inextensible; and rigid floors are supported on these columns. Although it is more convenient to model and analyze a shear building, such an idealization may influence the seismic responses of seismically isolated buildings. This study presents a comparison of the seismic performances of seismically isolated buildings with superstructures modeled as shear buildings to those with full three dimensional superstructures. Both linear and nonlinear base isolation systems with different isolation periods and superstructures with different number of stories are considered.  相似文献   

2.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

3.
The paper presents the seismic response analysis of a typical multistoreyed brick building. A number of variables representing the physical properties of the structural system, namely, number of storeys from one to four, wall thickness in various storeys from one to one and a half brick thick and damping from 5 per cent to 15 per cent of critical value are considered. A shear beam type multi-degree-of-freedom oscillator is taken to represent these buildings mathematically in which the masses of the floors and walls are assumed as lumped at the floor levels and the floors are assumed as rigid diaphragms. Koyna and El Centro earthquake accelerograms, representing two seismicity levels, are used for computing dynamic response of the buildings. Overturning and torsional effects have been included in the determination of timewise net stresses in the building elements and their seismic capabilities have been examined. From this study the critical sections for providing reinforcing have been identified and the minimum amount of necessary steel has been estimated.  相似文献   

4.
基于2013年4月20日四川芦山MS7.0地震灾区的房屋建筑震害调查资料, 初步分析了这次地震中建筑结构的震害特征. 结合典型建筑结构震害案例, 从抗震概念设计和抗震构造措施的角度对震害机理进行了探讨, 总结了结构抗震设计方面的经验和教训并给出了相关的建议. 分析表明, 农村自建的砖木和土木结构房屋的抗震能力普遍较差; 砖混结构和砌体-框架混合结构的抗震性能需要严格的抗震构造措施给予保证, 包括合理设置钢筋混凝土构造柱和圈梁, 合理设置承重墙的数量以及承重墙上开洞的数量和位置; 由于鞭梢效应造成的突出屋顶的楼梯间和加层的破坏需引起重视.   相似文献   

5.
The paper describes the earthquake performance assessment of two historical buildings located in Istanbul exposed to a Mw = 7+ earthquake expected to hit the city and proposes solutions for their structural rehabilitation and/or strengthening. Both buildings are unreinforced clay brick masonry (URM) structures built in 1869 and 1885, respectively. The first building is a rectangular-shaped structure rising on four floors. The second one is L-shaped with one basement and three normal floors above ground. They survived the 1894, Ms = 7.0 Istanbul Earthquake, during which widespread damage to URM buildings took place in the city. Earthquake ground motion to be used in performance assessment and retrofit design is determined through probabilistic and deterministic seismic hazard assessment. Strength characteristics of the brick walls are assessed on the basis of Schmidt hammer test results and information reported in the literature. Dynamic properties of the buildings (fundamental vibration periods) are measured via ambient vibration tests. The buildings are modelled and analyzed as three-dimensional assembly of finite elements. Following the preliminary assessment based on the equivalent earthquake loads method, the dynamic analysis procedure of FEMA 356 (Pre-standard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers, Reston, 2000) and ASCE/SEI 41-06 (Seismic rehabilitation of existing buildings, American Society of Civil Engineers, Reston, 2007) is followed to obtain dynamic structural response of the buildings and to evaluate their earthquake performance. In order to improve earthquake resistance of the buildings, reinforced cement jacketing of the main load carrying walls and application of fiber reinforced polymer bands to the secondary walls are proposed.  相似文献   

6.
建筑物震害预测对于制定城市防震减灾规划意义重大,对于我国高烈度区建造的砖墙-钢筋混凝土剪力墙组合结构,目前没有成熟的震害预测方法.为了预测西昌市砖墙-钢筋混凝土剪力墙组合结构建筑物在不同地震烈度下可能发生的震害程度,通过分析该种结构在不同地震作用下的受力特点,提出以结构薄弱层的楼层屈服强度系数为指标进行震害预测,并结合...  相似文献   

7.
大多数建筑结构由梁、柱、支撑、剪力墙、地基和楼板等主要结构组成。一般而言,楼板对建筑结构的抗震性能可以忽略不计,所以进行建筑结构分析的模型是无楼板的。因此,楼板被刚性隔板代替,以提高分析效率。本文提出的建筑结构抗震分析解析模型考虑了楼板抗弯刚度,该模型采用超级单元、刚性隔板和子结构技术来减少自由度。通过实例分析,验证了该模型在多层建筑结构抗震分析中的有效性和准确性。且此模型能够显著减少计算量,提高分析效率,振动周期和响应时间等分析结果的精度与精化模型的结果非常接近,说明该模型的提出是合理的。  相似文献   

8.
This paper presents the results of an experimental investigation carried out to investigate the seismic performance of a two storey brick masonry house with one room in each floor. A half‐scale building constructed using single wythe clay brick masonry laid in cement sand mortar and a conventional timber floor and timber roof clad with clay tiles was tested under earthquake ground motions on a shaking table, first in the longitudinal direction and then in the transverse direction. In each direction, the building was subjected to different ground motions with gradually increasing intensity. Dynamic properties of the system were assessed through white‐noise tests after each ground motion. The building suffered increasing levels of damage as the excitations became more severe. The damage ranged from cracking to global/local rocking of different piers and partial out‐of‐plane failure of the walls. Nevertheless, the building did not collapse under base excitations with peak ground acceleration up to 0.8g. General behaviour of the tested building model during the tests is discussed, and fragility curves are developed for unreinforced masonry buildings based on the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Effects of structural walls on the elastic–plastic earthquake response of short- to medium-height reinforced concrete buildings were investigated. The analytical model consists of independent lumped mass systems representing walls and frames connected at each floor. The wall structure undergoes flexural as well as shear deformation and fails in shear at relatively small story drifts, the frames deforming only in shear. As a measure of structural damage, the ductility factor responses of frame structures were calculated for different combinations of base shear coefficients for the frames and walls. In buildings with relatively weak frames, the installation of structural walls did not improve the large plastic response of the frames up to the point where the walls were unfailed in shear and the ductility factors of the frame structure were suddenly reduced to a very small number. For relatively strong frames, however, the response displacements decreased gradually as the number of walls increased, whether or not the walls failed. Empirical formulas for the required base shear coefficients of the walls and frames which gave a target ductility factor response also were derived for two particular groups of accelerograms. These equations should be of practical use in designing frame-wall type buildings and in retrofitting damaged buildings. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
结构抗震设计的基本原则之一是保证"强柱弱梁",但汶川地震等大量实际震害表明这一抗震设计目标并未能很好地实现。针对此问题,已开展大量研究,探讨了楼板、填充墙以及梁、柱、板配筋等因素对形成"强梁弱柱"的影响。本文则从计算模型方面,即结构分析中广泛采用的模型、精细有限元模型和楼板与梁分别考虑的模型,对梁柱内力影响进行了对比研究。结果表明,计算模型对梁、柱弯矩比有较大影响,是形成"强梁弱柱"的重要影响因素。  相似文献   

11.
鉴于超长混凝土框架结构行波效应规律尚缺乏系统研究,借助建筑结构通用有限元软件MI-DAS/GEN,采用一致与非一致两种激励方式对165~1100m/s地震波速作用下长度为33~264m的3层钢筋混凝土框架结构进行弹性时程分析。通过对比一致与非一致激励下的梁弯矩、剪力和轴力,详细讨论了其随波速、长度以及不同部位的变化规律。研究表明:波速越慢,模型越长,行波效应越明显。框架梁弯矩的增大作用主要集中在264m模型第1层两端,减小作用表现在各模型第1层中部和第2、3层的梁上;剪力与弯矩有相似的变化规律;梁中存在拉力与压力,中部各梁的拉力和压力较两端的梁要大。  相似文献   

12.
A shear wall building is considered as an assembly of plane and curvilinear shear walls tied together by floor slabs to act as a composite unit. Based on this conception and the continuous medium approach, the governing dynamic equations and boundary conditions are derived from energy principles, using Vlasov's theory of thin-walled beams. All primary and secondary inertia forces, as well as the influence of elastic foundation flexibility, have been taken into consideration. A numerical solution of the dynamic equations is achieved by employing the Ritz-Galerkin technique, yielding both natural frequencies and mode shapes. The technique is applicable to buildings containing coupled and non-coupled, open section shear walls oriented in plan in any arbitrary manner. The use of the method is illustrated by the example of a complex building with unsymmetric plan, and the analytical natural frequencies of two shear wall building models are compared with those obtained experimentally by other investigators.  相似文献   

13.
Using a newly introduced ductile low-rise shear wall with vertical keyways, a seismic resistance design approach for a practical type of composite structure, which consists of a reinforced concrete frame in the bottom floors and masonry structures in the upper floors, has been presented. The purpose of the new design approach is to improve the earthquake resistance of the whole structure by increasing the energy dissipation capacity in the bottom part of the structure. Non-linear analysis shows that, by adopting the newly proposed ductile low-rise shear wall in the bottom of the structure, the lateral deflection of the structure is not much more than that of a structure using conventional solid low-rise shear walls under a small or moderate earthquake excitation, and that even under the attack of a severe earthquake, a stable structural response can be expected for the proposed structure. Thus it is easy for such a structure to achieve the design objective of ‘minor damage in a small earthquake and prevention of collapse in a severe earthquake’ and the design method is of practical value for similar types of composite structures.  相似文献   

14.
外廊式教学楼是中小学校典型的建筑形式。汶川地震后,外廊式教学楼震害引起大量研究人员重视。2021年5月21日21时48分,云南大理州漾濞县发生6.4级地震,本文作者详细调查了位于漾濞县的4所典型框架结构外廊式教学楼,以震害较为严重的漾濞一中和花椒园小学为例,分析了结构各部位发生破坏的原因。以震害现象为佐证,得出以下结论:由于横墙的约束,楼板沿纵向平动,各轴构件的本构关系可在同一坐标系下进行对比分析,结构破坏取决于构件沿纵向的极限位移。并在此基础上,从新的角度探讨了多层建筑的抗震能力。  相似文献   

15.
平面非规则隔震结构性能参数对地震反应的影响   总被引:1,自引:0,他引:1  
本文提出了考虑内部刚度分布层单元构造方法。该法将楼板视为剪切弯曲深梁,并用单元平均刚度、刚度偏心距和弹力半径来构造侧移刚度分布。以U型和L型结构为算例,用反应谱方法和时程分析方法计算分析了隔震体系性能参数对非规则结构的局部变形的影响。  相似文献   

16.
饶力 《地震工程学报》2018,40(4):671-677
传统的动力弹塑性分析法在研究剪力墙的抗震性能时,忽略了对剪力墙转换结构关键结点的有效分析,导致建筑抗震性研究结果存在局限性。提出剪力墙转换结构关键结点对建筑抗震性能影响的分析方法。塑造剪力墙转换结构平面布置图,确定剪力墙转换结构关键结点,分析剪力墙转换结构关键结点的层间位移与位移角和关键结点处的楼层剪力,关键结点位置上升使得最大楼层的位移减小、位移角也逐渐变小。根据关键结点处于不同楼层时层间位移、位移角以及受力作用的不同,获取建筑结构上下层刚度的波动。实验结果说明,所提方法能够高精度、高效的对建筑抗震性能进行分析。  相似文献   

17.
The coupled torsional-flexural vibration of open-section shear walls, braced by connecting beams at each floor level, is analysed on the basis of Vlasov's theory of thin-walled beams. The basic dynamic equations and boundary conditions are derived from Hamilton's principle, and a numerical solution obtained by the Ritz-Galerkin method. In addition to the primary torsional and flexural inertias, secondary effects due to rotatory and warping inertia forces have also been taken into account. The method is suitable for both rigid and flexible base conditions. A series of numerical examples is presented in which analytical results are compared with available experimental data, and the effects of secondary inertia forces, base flexibility and connecting beams upon the vibration characteristics of such shear walls are examined for two different structural forms.  相似文献   

18.
Major damage has been reported in hilly areas after major earthquakes,primarily because of two special conditions:the variation in the seismic ground motion due to the inclined ground surface and the irregularities caused by a stepped base level in the structure.The aim of this study is to evaluate possible differences in the responses of Chilean hillside buildings through numerical linear-elastic and nonlinear analyses.In the first step,a set of response-spectrum analyses were performed on four simplified 2D structures with mean base inclination angles of 0°,15°,30°,and 45°.The structures were designed to comply with Chilean seismic codes and standards,and the primary response parameters were compared.To assess the seismic performance of the buildings,nonlinear static(pushover)and dynamic(time-history)analyses were performed with SeismoStruct software.Pushover analyses were used to compare the nonlinear response at the maximum roof displacement and the damage patterns.Time-history analyses were performed to assess the nonlinear dynamic response of the structures subjected to seismic ground motions modified by topographic effects.To consider the topographic modification,acceleration records were obtained from numerical models of soil,which were calculated using the rock acceleration record of the Mw 8.01985 Chilean earthquake.Minor differences in the structure responses(roof displacements and maximum element forces and moments)were caused by the topographic effects in the seismic input motion,with the highly predominant ones being the differences caused by the step-back configuration at the base of the structures.High concentrations of shear forces in short walls were observed,corresponding to the walls located in the upper zone of the foundation system.The response of the structures with higher angles was observed to be more prone to fragile failures due to the accumulation of shear forces.Even though hillside buildings gain stiffness in the lower stories,resulting in lower design roof displacement,maximum roof displacements for nonlinear time-history analyses remained very close for all the models that were primarily affected by the drifts of the lower stories.Additionally,vertical parasitic accelerations were considered for half the time-history analyses performed here.The vertical component seems to considerably modify the axial load levels in the shear walls on all stories.  相似文献   

19.
The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability.  相似文献   

20.
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号