首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Several sediment cores were collected from two proglacial lakes in the vicinity of Mittivakkat Glacier, south‐east Greenland, in order to determine sedimentation rates, estimate sediment yields and identify the dominant sources of the lacustrine sediment. The presence of varves in the ice‐dammed Icefall Lake enabled sedimentation rates to be estimated using a combination of X‐ray photography and down‐core variations in 137Cs activity. Sedimentation rates for individual cores ranged between 0·52 and 1·06 g cm−2 year−1, and the average sedimentation rate was estimated to be 0·79 g cm−2 year−1. Despite considerable down‐core variability in annual sedimentation rates, there is no significant trend over the period 1970 to 1994. After correcting for autochthonous organic matter content and trap efficiency, the mean fine‐grained minerogenic sediment yield from the 3·8 km2 basin contributing to the lake was estimated to be 327 t km−2 year−1. Cores were also collected from the topset beds of two small deltas in Icefall Lake. The deposition of coarse‐grained sediment on the delta surface was estimated to total in excess of 15 cm over the last c. 40 years. In the larger Lake Kuutuaq, which is located about 5 km from the glacier front and for which the glacier represents a smaller proportion of the contributing catchment, sedimentation rates determined for six cores collected from the centre of the lake, based on their 137Cs depth profiles, were estimated to range between 0·05 and 0·11 g cm−2 year−1, and the average was 0·08 g cm−2 year−1. The longer‐term (c. 100–150 years) average sedimentation rate for one of the cores, estimated from its unsupported 210Pb profile, was 0·10–0·13 g cm−2 year−1, suggesting that sedimentation rates in this lake have been essentially constant over the last c. 100–150 years. The average fine‐grained sediment yield from the 32·4 km2 catchment contributing to the lake was estimated to be 13 t km−2 year−1. The 137Cs depth profiles for cores collected from the topset beds of the delta of Lake Kuutuaq indicate that in excess of 27 cm of coarse‐grained sediment had accumulated on the delta surface over the last approximately 40 years. Caesium‐137 concentrations associated with the most recently deposited (uppermost) fine‐grained sediment in both Icefall Lake and Lake Kuutuaq were similar to those measured in fine‐grained sediment collected from steep slopes in the immediate proglacial zone, suggesting that this material, rather than contemporary glacial debris, is the most likely source of the sediment deposited in the lakes. This finding is confirmed by the 137Cs concentrations associated with suspended sediment collected from the Mittivakkat stream, which are very similar to those for proglacial material. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Variation in the rubidium to strontium (Rb/Sr) ratio of the loess–palaeosol sequences has been proposed to reflect the degree of pedogenesis and weathering in the northwestern region of China. To characterize the Rb/Sr ratio of the dissolved loads of a single catchment, we analysed a 12·08 m sediment core from Daihai Lake in Inner Mongolia, north China. Dating control was provided by 210Pb, 137Cs and AMS‐14C. Sequential extraction experiments were conducted to investigate the concentrations of Rb and Sr on various chemical fractions in the lake sediments. Down‐core variation in the Rb/Sr ratios provides a record of Holocene weathering history. From 9 to 3·5 ka bp , accelerated chemical weathering was experienced throughout the Daihai catchment under mainly warm and humid conditions, and this reached a maximum at c. 5 ka bp . However, weathering was reduced between c. 8·25 and 7·90 ka bp , which may reflect the global 8·2 ka cooling event. After c. 2·5 ka bp , increased Rb/Sr ratios with higher frequency of fluctuations indicate reduced weathering within the Daihai catchment. The highest Rb/Sr ratios in the Little Ice Age lake sediments indicate the weakest phase of Holocene chemical weathering, resulting from a marked reduction in Sr flux into the basin. The Rb/Sr record also shows an enhancement of chemical weathering under today's climate, but its intensity is less than that of the Medieval Warm Period. Increased Rb/Sr in lake sediment corresponding to reduced catchment weathering is in striking contrast to Rb/Sr decrease in the glacial loess layers in the loess–palaeosol sequence. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the 14C calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event.  相似文献   

4.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The purpose of this study was to examine the historical change in sedimentation rates in lakes that have been impacted by river regulation and agricultural activities in the Ishikari River floodplain. We dated sediment cores using caesium‐137 (137Cs) dating and tephrochronology, and we estimated sediment sources from 137Cs concentrations in the topsoil of representative land covers. We found that, between 1739 and 1963, the distance between the lake and the main river channel and whether or not the lake was connected to the river affected the sedimentation rates. After 1963, agricultural drainage systems were established in the Ishikari River floodplain. The average sedimentation rate before and after the construction of drainage ditches varied between 1–66 and 87–301 mg cm–2 a–1, respectively. The increase in the sedimentation rate after 1963 was caused by the construction of a number of drainage networks, as well as extensive cultivation activity and/or fragmentation of the swamp buffers surrounding the lakes. The 137Cs activities at the surfaces of the lake as well as the catchment‐derived 137Cs contributions and 137Cs inventory in the lake profiles were used to examine the sediment influx from the various drainage areas after the establishment of the drainage system. Our results indicate that the majority of the lake sediments were derived from cultivated areas, and therefore the catchment‐derived 137Cs contribution in the lakes was strongly correlated with the sedimentation rate. The 137Cs inventory across all of the lake profiles was also significantly greater than the atmospheric fallout. We identified a negative correlation between the 137Cs lake profile inventory and the sedimentation rate. This is because the sediment originating from the drainage areas contained low 137Cs concentrations, which diluted the overall concentration of 137Cs in the lake sediment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The Holocene record of Lake Lugano (southern basin: surface area 20.3 km2, maximum depth 87 m) comprising organic carbon-rich sediments (sapropels), is divided into eight intervals based on radiocarbon- and varve-dating. The content of organic carbon, inorganic carbon, and biogenic silica, as well as the benthic remains of ostracods and oligochaetes, are converted into accumulation rates and benthic abundances in order to assess past production rates and bottom water oxygen status, respectively. The results suggest three periods of distinct palaeolimnological character: (i) low primary production combined with shifts between aerobic and anaerobic profundal conditions (prior to ca. 3000 BC), (ii) moderate rates of production combined with a relatively high profundal oxygen content (after ca. 1500 BC), and (iii), high production rates (460 g C m–2 a–1) combined with anaerobic profundal conditions (present eutrophic state). Corresponding organic carbon contents in the sediments are: up to 5% (i), 4% (ii), and 8% (iii). Until the beginning of this century, the flux of autochthonous sediments to the lake floor correlated with the fluctuations in the allochthonous sediment accumulation rate, indicating that catchment erosion largely controlled lacustrine production during the Holocene history of Lake Lugano. Pollen data show catchment-vegetational transformations at ca. 3500 BC (change from fir to beech forests), at 1400 BC (onset of cereal vegetation) and at ca. A.D. 450 (strong increase in various cultural plants). The first two changes had a relatively large imprint on lacustrine sedimentation. At ca. 3500 BP, erosion increase in the catchment was triggered by vegetation changes in the mountain zone above ca. 1000 m a. s. l., which may have been induced by climatic and human alteration (drop in the treeline altitude). Maximum catchment erosion occurred at ca. 1400 BC which was clearly dominated by human cultivation during the Bronze Age. More oxygenated profundal conditions in the lake after ca. 3000 BC are possibly related to a better mixing of the lake waters during the winter season by increased wind activity.  相似文献   

7.
The rate of sedimentation in Lake Kinneret was measured over several years by means of sediment traps, in up to seven different locations in the lake. Gross sedimentation rates measured in the sediment traps vary from about 1·5 kg m−2 a−1 in the deepest part of the lake up to 10 kg m−2 a−1 near the mouth of the upper Jordan river. The rate of sedimentation near the Jordan's inflow is highly correlated to flow discharge in the river, while in the centre of the lake the seasonal sedimentation pattern is mainly correlated to the bloom period of Peridinium gatunense. During the bloom period of Peridinium gatunense sedimentation rates all over the lake are very similar, indicating that the Peridinium is evenly distributed in the lake. The average suspended sediment discharge of the upper Jordan river flowing into the lake is 41 000 ton a−1.Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A recently exposed section across a ?rst‐order valley buried beneath the regional blanket peat on hillside slopes in the upper Liffey valley, Co. Wicklow, is described. The section shows two alluvia within a shallow valley form underlain by an extensive boulder and stone line over regional till and weathered granite. 14C dates from wood in the alluvia indicate the older alluvium to have formed between 4324 ± 53 BP and 4126 ± 45 BP and the younger between 3217 ± 53 BP and 2975 ± 53 BP . The basal layer of the overlying peat yielded a date of 2208 ± 61 BP . The younger alluvium shows the effects of soil paludi?cation prior to the peat expansion. Dated pollen analyses elsewhere in the upper catchment con?rm the spread of blanket peat over most areas above 350 m after 4000–3600 BP . The buried valley was contributing sediments to the mid‐Holocene ?oodplains in the upper Liffey valley prior to the extension of blanket peat over the catchment after which sediment yields from it and the other catchment slopes declined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Spatial variability of recent lacustrine sedimentary structures and sedimentation rates are examined for Green Lake, a morphologically complex lake basin of the southern Coast Mountains, British Columbia. A dense, 100 m grid sampling scheme was used for sediment coring within the 2 km2 lake basin. Deltaic, massive, weakly laminated, and varved sediment sequences are identified within the sediment record. Spatial patterns among these sedimentary deposits are related to within‐lake sediment transfer processes, morphometric controls, and the extent of post‐depositional mixing by bioturbation. Unconformities, turbidites, and cohesive slump failure deposits, observed within the contemporary varve sequences, could all be correlated with major flooding events in the catchment area and direct anthropogenic disturbances along the shoreline. There is an overall, non‐linear decrease in sedimentation rates with increasing distance from the lake inflows; however, this pattern is disrupted in deep water sites of intervening lake sub‐basins where locally higher accumulation rates are observed. Spatial sedimentation patterns are quantitatively described by an empirically‐derived model. Systematic variations in the model parameters are observed for different lake sub‐regions and are associated with changing sediment transfer dynamics between proximal and distal sub‐basin settings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A suite of 27 short cores, 10 of which have been used for magnetic measurements and four for radiometric dating, provides a framework for reconstructing the processes, patterns and rates of sedimentation in Ponsonby Tarn, a small artificial impoundment created towards the end of the 19th century, close to the Sellafield nuclear reprocessing plant in NW England. Spatial and temporal changes in sedimentation are reconstructed and evidence presented for non-synchroneity in magnetic property changes from core to core in the upper part of the sequence, as a result of sorting and selective deposition at different distances from the inflow to the Tarn. Magnetic measurements alone are therefore not a secure basis upon which to quantify sediment yield for defined time intervals at this site. The chronology, established mainly from 210Pb and 134Cs analyses, allows estimates of mean sediment yield per annum for four periods: prior to AD 1940, 1940–1964, 1964–1986 and 1986–1991. The rates of sediment accumulation have increased in recent times, especially since 1964, with evidence for input from both magnetically enhanced soils and gleyed alluvial and/or podsolized subsoil sources. Pre-1940 mean annual deposition within the present area of the lake is calculated as 19·5 t a−1 and for the period since 1986 (the period of maximum sedimentation rates), as 111·3 t a−1. These represent yields of 7·0 t km−2 a−1 and 39·8 t km−2 a−1, respectively, for the catchment as a whole. Rock magnetic evidence, based on measurements of both bulk samples and the finest particle size separates, suggests that bacterial magnetite, formed within the lake, contributes to the magnetic properties of the sediments, thus modifying the signatures relating to allochthonous sediment input. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Cores taken at Burrinjuck Reservoir in southeastern New South Wales have been dated using the first appearance of 137Cs, charcoal/bushfire correlations, and annual grass pollen peaks. None of the main 210Pb dating models reproduced the ‘known’ chronology. Correlation analysis shows no significant relationship between original 210Pb (unsupp.) concentration and grain-size, sedimentation rate or loss on ignition. Differences in sediment source may explain the variations in 210Pb. A simple provenance model has been used to interpret the ratio of original 210Pb (unsupp.)/226Ra as a tracer of topsoils and subsoils. High ratios in the reservoir sediments probably indicate eroded topsoils and low ratios eroded subsoils.  相似文献   

12.
The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study analyses the lake impact and the consequences, and the catchment response to the landslide. A quasi-3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly fluidized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and subaquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geomorphology. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

13.
Lake sediments are valuable natural archives to reconstruct paleoclimate and paleoenvironmental changes which consist of inorganic and organic sediment compounds of allochthonous origin from the catchment and of autochthonous production in the lake. However, for robust paleo-reconstructions it is important to develop a better understanding about sedimentation processes, the origin of inorganic and organic sediment compounds and their distribution within the lake. In this context, modern process studies provide important insights, although environmental and anthropological changes can affect the spatial distribution of sediment compounds through time. Therefore, in this study the spatial distribution of grain size and geochemical proxies in 52 surface sediment samples from Lake Khar Nuur, a small high-altitude lake in the Mongolian Altai with a small and anthropogenically used hydrological catchment, is investigated. The results show a distinct sediment focussing in the two deep basins of the lake, which therefore act as accumulation zones. In those accumulation zones, total organic carbon (TOC), total nitrogen (N) and their isotopic composition (δ13CTOC, δ15N) as well as n-alkanes indicate that organic sediment compounds are a mixture of both allochthonous and autochthonous origin. While the recent catchment vegetation consists of grasses/herbs and the shrub Betula nana (L.) with distinct differences in their n-alkane homologue patterns, those differences are not reflected in the sediment surface samples which rather indicates that grass-derived n-alkanes become preferentially incorporated in the lake. Extensive anthropogenic activity such as grazing and housing in the southern part of the catchment causes soil erosion which is well reflected by high TOC, N and sulphur (S) contents and 15N depleted δ15N values at the central southern shore, i.e. increased allochthonous sediment input by anthropogenically-induced soil erosion. Overall, the surface sediments of Lake Khar Nuur origin from allochthonous and autochthonous sources and are focussed in the accumulation zones of the lake, while their distribution is both environmentally and anthropogenically driven.  相似文献   

14.
The sediment stratigraphy of a 4 m thick intercalated Holocene alluvial fill and valley floor peat at a site in the Milfield Basin, Northumberland, has been dated by a series of eight 14C assays, and related to a previously analysed pollen record. The sequence extends from the earliest Holocene until c. 2800 cal. BP . Prior to the onset of peat inception, substantial amounts of channel-trenching can be demonstrated to have occurred in the Milfield Basin during the Loch Lomond Stadial. There is no measurable early Holocene accelerated fluvial activity, but a major flooding event occurred at c. 7500 cal. BP , much earlier than recorded elsewhere in the region. The explanation for this is not clear. However, the cessation of mid-Holocene overbank sedimentation at c. 4000–3500 cal. BP is tentatively correlated with slope stability associated with woodland regeneration. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Sediment yield in the San Pedro Lake watershed, inferred from sedimentation in the lake, can be related to land use changes shown on aerial photographs taken during the period 1943–1994. In this watershed, which covers 4·5 km2 of mountainous terrain in San Pedro County, central Chile, the area of native forest species decreased from 70 per cent in 1943 to 13 per cent in 1994. During this same period, the area of pine plantations increased from 4 to 46 per cent. To study effects of these changes, we took a core from the centre of the lake and estimated sedimentation rates by 210Pb dating, which we checked with 137Cs and pine pollen. The results show that sedimentation rate ranged from 5 mg cm−2 a−1 in the late 1800s to 60 mg cm−2 a−1 in the late 1960s. These rates, together with assumptions about the production and delivery of the sediment, give corresponding figures for sediment yields with maximum values close to 1 t ha−1 a−1. Sediment yield between 1955 and 1994 closely tracks the total land use change that can be detected, irrespective of land use type, on sets of aerial photographs taken four to 18 years apart. However, this measure of land use change, while convenient and successful as a predictor of historical erosion, may be unreliable because it probably excludes many changes that occurred in long intervals between successive photographs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The chronology of a gravity core sediment from Longgan Lake center was defined by210Pb, combining with historic events recorded by document and sediment. The relationship between vegetation, soil erosion and lake nutrient state was discussed based on pollen, magnetic parameters, diatoms, phosphorus and pigments. The results show that the lake has undergone twice obvious transformations from oligotrophic to mesotrophic condition. Two eutrophications occurring at about 1768AD and the beginning of the 20th century respectively were related to external nutrient loading increase resulting from the enhanced human activities in the lake catchment. It is probable that strength of human actions in historic periods was influenced more or less by climatic changes. The lake eutrophication presented a more serious tendency because of the wide use of chemical fertilizer, reclamation of wetland and wetland vegetation destruction around the lake in the last 40 years.  相似文献   

17.
This paper examines the morphology and processes governing the development of shore platforms at Lake Waikaremoana, North Island, New Zealand. Shore platforms at Lake Waikaremoana are recent features, and were formed when a new sequence of shoreline development was initiated, due to lowering of the lake by 5 m in 1946 for hydroelectric power development. Three predominant platform morphologies were identified around the lake. These include gently sloping platforms (c.1·5 to 3·9°), ramp platforms (c.6·8 to 9·2°), and concave ramp platforms (c.7·9 to 12°). Platform widths ranged from 11 to 31 m, with the gently sloping platforms characterized by the widest morphologies. Erosion rates were estimated using perched sandstone boulders and were found to range from 3·4 to 12·5 mm a?1, with a mean erosion rate of 5·9 mm a?1. Higher rates of erosion were identified at lower platform elevations, due to a greater frequency of wetting and drying cycles coincident with storm waves, while lower erosion rates were identified at higher elevations. Field evidence suggests that shore platforms at Lake Waikaremoana were likely initiated and continue to develop as a result of subaerial wetting and drying cycles. Waves, coincident with fluctuating lake levels, play an important role by removing the weathered material from the platforms, and appear to control the width of the platforms. A conceptual model of platform development is presented, and analogies are drawn between this model, and the formation of shore platforms in oceanic environments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
利用埃及北部Faiyum盆地获得的高取芯率沉积物岩芯,进行沉积物多种磁性参数的测量,结合有机碳、介形虫、粒度等分析,在AMS14C加速器测年的基础上,建立全新世以来湖泊沉积物磁性特征变化的时间序列.结果表明,粒度效应以及沉积后的各种次生作用对沉积物的磁性特征没有明显的影响,磁性变化主要反映了沉积物不同来源组成的相对变化.全新世前沉积物磁性较弱,主要含不完全反铁磁性矿物,与周边沙漠的物质相似,结合其粒度特征,沉积物来源应以近源物质为主.全新世早中期(约10 5.4 ka BP)沉积物磁性变化相对稳定,有机质含量也较高,指示了来自尼罗河较为稳定的物质供应;而大约5.4 ka BP尤其最近约4.2 ka BP以来,磁性的明显变化反映了流域降水减少情况下,来自青尼河物质贡献的相对增加;最近约2.0 ka BP以来沉积物的磁性变化,则更多地与盆地人类活动的强化有关.总体而言,Faiyum盆地全新世以来的环境演变主要受控于全新世以来尼罗河与盆地的水力学联系.即:全新世前盆地未与尼罗河连通时,沉积物主要来源于周边沙漠的风成物质;而受全新世早-中期来流域季风降水增加的影响,泛滥的尼罗河为盆地提供了相对稳定的物质供应,湖泊也处于高湖面;全新世晚期以来,随着流域干旱化的加剧,尼罗河与盆地的连通性开始减弱,来自高磁性的青尼罗河物质贡献开始相对增加.最近约2.0 ka BP以来,虽然仍有人工运河连接尼罗河与盆地,但沉积物磁性的显著变化更多地反映了盆地人类活动的不断强化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号