首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
本文探讨了应用多时相Landsat Mss图像进行森林动态监测的方法。研究了差值图像法、比值植被指数差值法、归一化植被指数差值法、多时相主分量分析法(垂直植被指数法)和分类比较法对提取森林动态变化信息的作用。结果表明,3种植被指数法都能较好地提取植被动态信息,可用于森林面积消长的动态监测。  相似文献   

2.
Timely and accurately monitoring stand ages of deciduous rubber plantations is of great importance for ecological studies and plantations management. The re-establishment of rubber plantations usually experiences a short period (several years) of land clearance and transplantation of rubber seedlings, along with a noticeable landscape change from well-grown forest to bare land and sparse vegetation in situ. With Landsat times series (LTS) data of four commonly-used vegetation indices (VIs), namely the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Moisture Index (NDMI), and Normalized Burn Ratio (NBR), and three non-visible spectral bands, i.e. the near-infrared (NIR) and shortwave-infrared (SWIR1/2), in this study, an approach by combining the inter-annual defoliating and foliating features of rubber trees and the intra-annual landscape changes of rubber plantations was presented to detect and map stand ages of deciduous rubber plantations in an anti-chronological manner across Xishuangbanna between 1987 and 2018, one of the most intensive regions of deciduous rubber plantations within the tropics. The approach highlighted the repeated distribution of newly-cleared and replanted plot (NCRP) of rubber seedlings due to rubber management. It applied the bi-temporal VIs thresholds of zero of NBR and NDMI during the defoliation to foliation phases to delineate the stand ages of deciduous rubber plantations at an interval of five years, by combining a Landsat-based rubber map in 2018 and 32-year NCRPs as well as quadri-classified age-groups and seven sub-categories (i.e. ≤5 as infantile rubber plantations (IRP), 6–10 as young rubber plantations (YRP), 11–15 and 16–20 as mature rubber plantations (MRP), 21–25, 26–30, and ≥31 years as old rubber plantations (ORP)). The results showed that the areas of IRP, YRP, MRP, and ORP were 19.1 km2, 817.1 km2, 1681.7 km2, and 573.7 km2 in 2018, respectively. Spatially, the YRP are mainly around the outskirts of two county-level administrative centers (Jinghong and Mengla), while ORP primarily distributed along main roads. Nearly 53.9% of ORP, 51.8% of IRP, 47.3% of MRP and 46.3% of YRP were in Jinghong City, and Mengla County had 50.5% of YRP, 48.8% of MRP, 42.4% of IRP and 36.3% of ORP. This study demonstrates that the bi-temporal VIs thresholds method (i.e. NBRdefoliation <0, NDMIdefoliation <0, NBRfoliation <0, and NDMIfoliation <0) have great potential for detecting stand ages of deciduous rubber plantations.  相似文献   

3.
A time series of leaf area index (LAI) of a managed birch forest in Germany (near Dresden) has been developed based on 16-day normalized difference vegetation index (NDVI) data from the Landsat ETM+ sensor at 30 m resolution. The Landsat ETM+ LAI was retrieved using a modified physical radiative transfer (RTM) model which establishes a relationship between LAI, fractional vegetation cover (fC), and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. In situ measurements of photosynthetically active radiation (PAR) and vegetation structure parameters using hemispherical photography (HSP) served for calibration of model parameters, while data from litter collection at the study site provided the ground-based estimates of LAI for validation of modelling results. Influence of view-illumination conditions on optical properties of canopy was simulated by a view angle geometry model incorporating the solar zenith angle and the sensor viewing angle. Effects of intra-annual and inter-annual variability of structural properties of the canopy on the light extinction coefficient were simulated by implementing variability of the leaf inclination angle (LIA), which was confirmed in the study site. The results revealed good compatibility of the produced Landsat ETM+ LAI data set with the litter-estimated LAI. The results also showed high sensitivity of the LAI retrieval algorithm to variability of structural properties of the canopy: the implementation of LIA dynamics into the LAI retrieval algorithm significantly improved the model accuracy.  相似文献   

4.
This study proposes a strategy for accurate mapping of rubber trees through the analysis of Landsat time series datasets. The phenological dynamics of rubber trees were derived from the Normalized Difference Vegetation Index (NDVI) to verify the three important phenological metrics of rubber trees; defoliation, foliation and their growing stages. A decade (2006–2015) ago, Landsat time series NDVIs were used to study the strength of relationship between rubber trees, evergreen trees and oil palm trees. Two important results that could discriminate these three types of vegetation were found; firstly, a weak relationship of NDVIs between rubber trees and evergreen trees during the defoliation period (r2 = 0.1358) and secondly between rubber trees and oil palm trees during the growing period (r2 = 0.2029). This analysis was verified using Support Vector Machine to map the distribution of the three types of vegetation. An accurate mapping strategy of rubber trees was successfully formulated.  相似文献   

5.
基于TM影像的城市建筑用地信息提取方法研究   总被引:2,自引:0,他引:2  
本文选用金华市Landsat TM影像为研究的数据源,在归一化裸露指数基础上,利用归一化植被指数提取出非植被信息,通过图像二值化、叠加分析以及掩膜处理去除了低密度植被覆盖区域的噪音信息,自动提取了金华城市建筑用地信息。研究结果表明,归一化裸露指数和归一化植被指数相结合的方法弥补了单一利用归一化裸露指数来提取城市建筑用地信息的不足,提高了提取精度,而且结果客观可信,是一种不经人为干预的、快速有效的提取城市建筑用地方法。  相似文献   

6.
Green-leaf phenology describes the development of vegetation throughout a growing season and greatly affects the interaction between climate and the biosphere. Remote sensing is a valuable tool to characterize phenology over large areas but doing at fine- to medium resolution (e.g., with Landsat data) is difficult because of low numbers of cloud-free images in a single year. One way to overcome data availability limitations is to merge multi-year imagery into one time series, but this requires accounting for phenological differences among years. Here we present a new approach that employed a time series of a MODIS vegetation index data to quantify interannual differences in phenology, and Dynamic Time Warping (DTW) to re-align multi-year Landsat images to a common phenology that eliminates year-to-year phenological differences. This allowed us to estimate annual phenology curves from Landsat between 2002 and 2012 from which we extracted key phenological dates in a Monte-Carlo simulation design, including green-up (GU), start-of-season (SoS), maturity (Mat), senescence (Sen), end-of-season (EoS) and dormancy (Dorm). We tested our approach in eight locations across the United States that represented forests of different types and without signs of recent forest disturbance. We compared Landsat-based phenological transition dates to those derived from MODIS and ground-based camera data from the PhenoCam-network. The Landsat and MODIS comparison showed strong agreement. Dates of green-up, start-of-season and maturity were highly correlated (r 0.86-0.95), as were senescence and end-of-season dates (r > 0.85) and dormancy (r > 0.75). Agreement between the Landsat and PhenoCam was generally lower, but correlation coefficients still exceeded 0.8 for all dates. In addition, because of the high data density in the new Landsat time series, the confidence intervals of the estimated keydates were substantially lower than in case of MODIS and PhenoCam. Our study thus suggests that by exploiting multi-year Landsat imagery and calibrating it with MODIS data it is possible to describe green-leaf phenology at much finer spatial resolution than previously possible, highlighting the potential for fine scale phenology maps using the rich Landsat data archive over large areas.  相似文献   

7.
利用月度肾综合征出血热发病人数和长时序月度NDVI值的相互关系, 对肾综合征出血热的发病趋势及发病人数进行预测。研究区大杨树镇2001—2005年共有144例完整的HFRS病人资料, 以及同期详细的宿主动物捕获数据。基于Landsat TM影像以及Google earth 影像, 大杨树地区土地利用分为4种类型, 山地、林地、农田以及居民点。各类土地利用类型的NDVI数据由SPOT-4 卫星的 VGT-S10数据集(10d最大化合成的NDVI数据)提供。对HFRS病例与NDVI之间的关系进行图解分析、相关分析和回归分析。研究表明, NDVI的峰值多出现于8月, 而HFRS发病人数的峰值多出现在11月。前朔3个月的农田NDVI值与HFRS病例数之间的相关系数为0.67(P值<0.001)。农田NDVI峰值比HFRS病例的峰值提前了3个月。研究量化了NDVI与HFRS之间的关系, 为HFRS早期预警系统的建立提供了依据。  相似文献   

8.
Successfully delineating management zones that differ in crop productivity is an important component of site-specific management. We compared the effectiveness of the digitally scanned color aerial infrared photographs and digital Landsat Thematic Mapper (TM) data for delineating within-field zones. The zones delineated using normalized difference vegetation index (NDVI) from TM data explained 34% of field yield variance compared with 9% for that from digitally scanned color aerial infrared photograph data. The zones from NDVI using Landsat TM were better able to capture spatial differences in plant growth and relatively stable soil attribute of surface soil organic carbon.  相似文献   

9.
Monitoring phenological change in agricultural land improves our understanding of the adaptation of crops to a warmer climate. Winter wheat–maize and winter wheat–cotton double-cropping are practised in most agricultural areas in the North China Plain. A curve-fitting method is presented to derive winter wheat phenology from SPOT-VEGETATION S10 normalized difference vegetation index (NDVI) data products. The method uses a double-Gaussian model to extract two phenological metrics, the start of season (SOS) and the time of maximum NDVI (MAXT). The results are compared with phenological records at local agrometeorological stations. The SOS and MAXT have close agreement with in situ observations of the jointing date and milk-in-kernel date respectively. The phenological metrics detected show spatial variations that are consistent with known phenological characteristics. This study indicates that time-series analysis with satellite data could be an effective tool for monitoring the phenology of crops and its spatial distribution in a large agricultural region.  相似文献   

10.
Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling, albedo, and water and energy exchanges. To understand and predict these critical land-atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate variability, and ultimately climate change. Coarse-resolution sensors such as MODIS and AVHRR have been useful to study vegetation phenology from regional to global scales. These sensors are, however, not capable of discerning phenological variation at moderate spatial scales. By offering increased observation density and higher spatial resolution, the combination of Landsat and Sentinel-2 time series might provide the opportunity to overcome this limitation.In this study, we analyzed the potential of combined Sentinel-2 and Landsat time series for estimating start of season (SOS) of broadleaf forests across Germany for the year 2018. We tested two common statistical modeling approaches (logistic and generalized additive models using thin plate splines) and the two most commonly used vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI).We found strong agreement between SOS estimates from logistic and spline models (rEVI = 0.86; rNDVI = 0.65), whereas agreement was higher for EVI than for NDVI (RMSDEVI = 3.07, RMSDNDVI = 5.26 days). The choice of vegetation index thus had a higher impact on the results than the fitting method. The EVI-based SOS also showed higher correlation with ground observations compared to NDVI (rEVI = 0.51, rNDVI = 0.42). Data density played an important role in estimating land surface phenology. Models combining Sentinel-2A/B, with an average cloud-free observation frequency of 12 days, were largely consistent with the combined Landsat and Sentinel-2 models, suggesting that Sentinel-2A/B may be sufficient to capture SOS for most areas in Germany in 2018. However, in non-overlapping swath areas and mountain areas, observation frequency was significantly lower, underlining the need to combine Landsat and Sentinel-2 for consistent SOS estimates over large areas. Our study demonstrates that estimating SOS of temperate broadleaf forests at medium spatial resolution has become feasible with combined Landsat and Sentinel-2 time series.  相似文献   

11.
Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.  相似文献   

12.
Vegetation indices are widely used to assess quantitatively the biophysical characteristics of vegetation from remote sensing measurements. Different indices have their own advantages in retrieving vegetation information. It is very difficult to precisely attribute any vegetation index to any particular vegetation biophysical parameter. This study examines the correlations among different vegetation indices derived from a set of mustard, gram and wheat fields at three different phenological growth stages. The results are presented as correlation matrices along with correlation scatter plots. Homologous (equi-magnitude) vegetation information is represented by NDVI, PVI and AtRVI for wheat crop with leaf area index less than 1.  相似文献   

13.
Abstract

Spatial and temporal vegetation contrasts between the nations of Haiti and the Dominican are analyzed using NDVI data derived from 30m resolution Landsat imagery and 8km resolution AVHRR imagery from the NOAA / NASA Pathfinder database. Analysis of vegetation dynamics in the Hispaniola border region indicates denser vegetation cover and a stronger correlation between elevation, slope, and NDVI on the Dominican side of the frontier. Temporal patterns of NDVI dynamics along the frontier suggest that changes in biomass are both more homogeneous and more extreme on the Haitian side. Analysis of 17 years of 8km resolution AVHRR imagery for the entire island of Hispaniola reveals consistently higher NDVI values for the Dominican Republic and a distinct intra‐annual pattern of mean monthly NDVI deviations that have important implications for future studies of vegetation dynamics in the region.  相似文献   

14.
太湖水生植被NDVI的时空变化特征分析   总被引:2,自引:0,他引:2  
为了明确太湖不同生态区水生植被长势的变化规律及其影响因子,利用MODIS传感器提供的NDVI数据,分析了太湖2000年—2015年NDVI的时间及空间变化特征。结果表明:太湖水生植被NDVI存在明显的季节变化和年际变化,NDVI每年最小值出现在冬季,最大值出现在植被生长旺盛的8月或9月,其值可达0.35;太湖全湖NDVI多年平均值为0.1,最大值为0.14,出现在2007年。太湖NDVI的空间差异可将太湖划分为不同的植被类型区,太湖西北部(竺山湾和梅梁湾)NDVI最大值可达0.2,植被类型主要以浮游藻类为主,东太湖区域最大值超过0.6,主要以沉水植被为主;太湖不同区域植被动态特征对气象因子的响应也不尽相同,沉水植物生长与平均气温有显著的正相关关系,而浮游植物区的生长状况受平均风速影响较大。  相似文献   

15.
Many remote sensing applications are predicated on the fact that there is a known relationship between climate and vegetation dynamics as monitored from space. However, few studies investigate vegetation index variation on individual homogeneous land cover units as they relate to specific climate and environmental influences at the local scale. This study focuses on the relationship between the Palmer Drought Severity Index (PDSI) and different vegetation types through the derivation of vegetation indices from Landsat 7 ETM+ data (NDVI, Tasseled Cap, and SAVI). A series of closely spaced through time images from 1999 to 2002 were selected, classified, and analyzed for an area in northeastern Ohio. Supervised classification of the images allowed us to monitor the response in individual land cover classes to changing climate conditions, and compare these individual changes to those over the entire larger areas. Specifically, the images were compared using linear regression techniques at various time lags to PDSI values for these areas collected by NOAA. Although NDVI is a robust indicator of vegetation greenness and vigor, it may not be the best index to use, depending on the type of vegetation studied and the scale of analysis used. A combination of NDVI and other prominent vegetation indices can be used to detect subtle drought conditions by specifically identifying various time lags between climate condition and vegetation response.  相似文献   

16.
ABSTRACT

Temporal trajectories of apparent vegetation abundance based on the multi-decadal Landsat image series provide valuable information on the postfire recovery of chaparral shrublands, which tend to mature within one decade. Signals of change in fractional shrub cover (FSC) extracted from time-sequential Normalized Difference Vegetation Index (NDVI) data can be systematically biased due to spatial variation in shrub type, soil substrate, or illumination differences associated with topography. We evaluate the effects of these variables in Landsat-derived metrics of FSC and postfire recovery, based upon three chaparral sites in southern California which contain shrub community ecotones, complex terrain, and soil variations. Detailed validations of prefire and postfire FSC are based on high spatial resolution ortho-imagery; cross-stratified random sampling is used for variable control. We find that differences in the composition and structure of shrubs (inferred from ortho-imagery) can substantially influence FSC-NDVI relations and impact recovery metrics. Differences in soil type have a moderate effect on the FSC-NDVI relation in one of the study sites, while no substantial effects were observed due to variation of terrain illumination among the study sites. Arithmetic difference recovery metrics – based on NDVI values that were not normalized with unburned control plots – correlate in a moderate but significant manner with a change in FSC (R 2 values range 0.47–0.59 at two sites). Similar regression coefficients resulted from using Landsat visible reflectance data alone. The lowest correlations to FSC resulted from Soil-Adjusted Vegetation Index (SAVI) and are attributed to the effects of the soil-adjustment factor in sparsely vegetated areas. The Normalized Burn Ratio and Normalized Burn Ratio 2 showed a moderate correlation to FSC. This study confirms the utility of Landsat NDVI data for postfire recovery evaluation and implies a need for stratified analysis of postfire recovery in some chaparral landscapes.  相似文献   

17.
The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green\red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the exploitation of representative temporal information that is collected with accessible and simple devices, for the subsequent determination of optimal temporal acquisition of images by overhead sensors, for vegetation mapping over larger areas.  相似文献   

18.
A remote sensing based land cover change assessment methodology is presented and applied to a case study of the Oil Sands Mining Development in Athabasca, Alta., Canada. The primary impact was assessed using an information extraction method applied to two LANDSAT scenes. The analysis based on derived land cover maps shows a decrease of natural vegetation in the study area (715,094 ha) for 2001 approximately −8.64% relative to 1992. Secondary assessment based on a key resources indicator (KRI), calculated using normalized difference vegetation index (NDVI measurements acquired by NOAA–AVHRR satellites), air temperature and global radiation was performed for a time period from 1990 to 2002. KRI trend analysis indicates a slightly decreasing trend in vegetation greenness in close proximity to the mining development. A good agreement between the time series of inter-annual variations in NDVI and air temperature is observed increasing the confidence of NDVI as an indicator for assessing vegetation productivity and its sensitivity to changes in local conditions.  相似文献   

19.
青藏高原小嵩草高寒草甸返青期遥感识别方法筛选   总被引:3,自引:1,他引:2  
小嵩草高寒草甸是青藏高原的主要植被类型,研究其返青期识别方法对于模拟及预测青藏高原植被物候变化具有重要意义。常用的植被返青期遥感识别方法主要是先对遥感植被指数原始时序数据进行拟合去噪声再求取返青期,各种方法对研究区域、研究经验、参数设置、函数初值设置等有很强的依赖性。为避免返青期识别方法在曲线拟合时对参数初值的依赖性和陷入局部最优解,本文引入了模拟退火算法对双高斯和双逻辑斯蒂函数进行参数优化,并分别对基于以上两种函数及多项式拟合的植被指数时序曲线进行对比,从而选出最佳拟合方法,最后采用最大斜率阈值法、动态阈值法和曲率法识别返青期。利用青藏高原小嵩草高寒草甸34个样本点的返青期地面观测数据及相应的8 km分辨率的NOAA归一化差值植被指数(NDVI)时序数据对以上各种组合的返青期遥感识别方案进行了测试,并选取了153个遥感实验点求取了近30年(1982年—2011年)青藏高原小嵩草高寒草甸的返青期,结果表明:采用双高斯函数拟合的NDVI曲线与原始NDVI时序数据最为接近,在此基础上采用最大斜率阈值法识别的小嵩草高寒草甸返青期及其变化趋势与地面物候观测结果最为一致;同时发现近30年青藏高原小嵩草高寒草甸的平均返青期主要集中在每年的第120—140天,并且呈逐年提前趋势,30年来提前了7天。  相似文献   

20.
IntroductionThe scientists have begun to retrieve land sur-face temperature (LST) fromsatellite data sincethe launch of TIROS-Ⅱin 60s of the 20th centu-ry . With the development of remote sensingtechnology and its application, more and moreLST retrieval …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号