首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Considering two seismic parameters,energy and the frequency of an earthquake as a whole from the definition of information gain in entropy,we study the information gain of M≥6.0 earthquakes from the world earthquake catalogue during 1900-1992.The results show that the information gain decreases before strong earthquakes.Our study of the recent seismic tendency of large earthquakes shows that the probability of earthquakes with M≥8.5 is low for the near future around the world.The information gain technique provides a new approach to tracing and predicting earthquakes from the data of moderate and small earthquakes.  相似文献   

2.
The September 21,1999,Jiji(Chi-Chi) MW7.6 earthquake is the strongest event occurred since 1900 in Taiwan of China.It is located in the middle segment of the western seismic zone of Taiwan.Based on several versions of China earthquake catalogue this study found that a seismic gap of M≥5 earthquakes appeared,in and around the epicenter region,24 years before and lasted up to the mainshock occurrence.This study also noticed that there existed a lager seismically quiet region of M≥4 earthquakes,which lasted for about 2.5 years before the mainshock occurrence.The spatial variation pattern of regional seismicity before the mainshock seems to match with its coseismic source rupture process.The mentioned seismicity gap and seismic quiescence might be an indication of the preparation process of the Jiji strong earthquake.  相似文献   

3.
Li Gang 《中国地震研究》2007,21(1):110-120
1 SURVEY OF GLOBAL SEISMICITY IN 2006 A total of 15 strong earthquakes with Ms ≥ 7.0 occurred in the world according to the Chinese Seismic Station Network in 2006 (Table 1 ). The strongest earthquakes were the Kamchatka earthquake with Ms8.0 on March 29 and the Kuril Islands earthquake with Ms8.0 on November 15 (Fig. 1). The frequency was slightly lower, and the energy release of earthquakes reduced in 2006 compared with the seismicity in 2005. The seismicity last year had the following characteristics:  相似文献   

4.
<正>1SURVEY OF GLOBE SEISMICITYIN 2008 Atotal of 19strong earthquakes withMS≥7.0occurred in the world in2008according to the Chinese Seismic Station Network(Table1).The strongest earthquake was the Wenchuan earthquake withMS8.0on May12,2008(Fig.1).Earthquake frequency was apparently lower and the energy release remarkably attenuated in2008,compared to seismicity in2007.The characteristics of seismicity are as follows:  相似文献   

5.
This paper introduces the geological structure background around the 2014 Yutian Ms7. 3 earthquake area, investigates and analyzes the regime of small earthquake activity and the characteristics of regional seismicity pattern in Xinjiang before the earthquake, and compares the characteristics of the regional seismic activity with the 2008 Yutian Ms7.3 earthquake. The results show: ① 2 ~ 3 years before the 2014 Yutian Ms7. 3 earthquake, Xinjiang was in a seismic active state with strong earthquake occurring successively, and before the 2008 Ms 7. 3 earthquake, Xinjiang was in the quiet state of moderate-small earthquakes with M3. 0 ~ 4. 0. ② Before this Yutian Ms7. 3 earthquake, the regional seismic activity showed a short-term anomaly feature, that is, seismicity of M ≥ 5. 0 earthquakes significantly increased on the Altun seismic zone and in the source area three years before the Ms7.3 earthquake, while a five year long quiescence of seismicity of M ≥4. 0 earthquakes appeared on the east of the source area in a range of about 440kin. Six months before this M7. 3 earthquake, there existed seismic gap of M3. 0 ~ 4. 0 earthquakes and near-conjugate seismic belt magnitude 3. 0 and 4. 0 in the source area. ③ The state of strong earthquake activity and the seismicity pattern of small earthquakes before this Yutian Ms7. 3 earthquake were significantly different to that before the 2008 Yutian Ms7. 3 earthquake, and this may be related to the different seismogenic environments of the two Ms7. 3 earthquakes.  相似文献   

6.
The tempo-spatial variation of seismic activity before great Chile MW8.8 earthquake on February 27,2010 is studied.Some results are as follows:1 Two types of seismic gaps appeared before the Chile MW8.8 shock.One is background gap of MW≥8.0 earthquakes with 360 km length since 1900,the other is seismogenic gap formed by M≥5.5 earthquakes with 780 km length five years before the Chile earthquake;2 There was only one MW7.1 earthquake in the middle and southern part of Chile from 1986 to 2010.The obvious quiescence of MW≥7.0 earthquake is the long-term background anomaly for the Chile earthquake;3 The quiescence of M≥6.5 earthquakes appeared in South American block and its vicinity during the period from 2007 to 2009,and the quietude state has been disappeared three months before the Chile MW8.8 earthquake;4 The deep and intermediate-depth earthquake activity has been noticeablely strengthened in the subduction zone of South American block since 1993;5 The great Chile earthquake shows that global seismicity is still in the active period of MW≥8.5 earthquakes since 2004.Based on the characteristics of the former two active periods,several great earthquakes with MW≥8.5 would take place in a few years.In addition,the circum-Pacific seismic belt would be the main region for MW≥8.0 earthquakes.  相似文献   

7.
This paper studies the temporal and spatial distribution of great global earthquakes( M W≥8.0) since 1900.We compare the two periods of upsurges of great earthquakes occurring in the middle of last century and beginning of this century.The former period took place between 1950 and 1965 during which 13 great earthquakes( M W≥ 8.0) occurred,including three events with moment magnitude greater than 9.0.The largest magnitude in this period reached 9.6.The latter period starts from the beginning of this century.In less than 12 years,15 great earthquakes have attacked the world with the largest magnitude being M W9.1.On the basis of comparison between these two upsurges of global earthquake activity,we infer that the ongoing high level of earthquake activity may continue for another five years or so.Numerous great earthquakes( M W≥8.0) and many large earthquakes( M W6.0~7.0) will occur globally in these five years.In addition,this paper also discusses the relationships between earthquake activity along the Sumatra segment of the Indian-Australia plate boundary and that in the Bayankala block in the middle of Qinghai-Tibetan plateau as well as in the blocks of the southern plateau.The results indicate that the Qinghai-Tibetan plateau,in particular its middle and southern parts,is a likely place for future earthquakes of magnitude over 7.0.  相似文献   

8.
26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the increase of small earthquake activity before the 22 moderate-strong earthquakes has indicated that small earthquake activity was enhanced before 17 of the moderate-strong earthquakes. Though the increased seismicity is a common phenomenon in the northeast margin of the Qinghai-Xizang ( Tibet ) block,we have difficulty in predicting the moderate-strong earthquakes by this phenomenon. In order to predict the moderate-strong earthquakes through the increased seismicity of small earthquakes,this paper attempts to propose a new method, which calculates small earthquake frequency through the change of distribution pattern of small earthquakes, based on the characteristics of small earthquake activity in the northeastern Qinghai-Xizang (Tibet) block,and then make primary applications. The result shows that we are able to obtain obvious anomalies in the frequency of small earthquakes before moderate strong earthquakes through the new method,with little spatial range effect on the amplitude of this small earthquake frequency anomaly. We can obtain mid to short-term anomaly indices for moderate-strong earthquakes in the northeast margin of the Qinghai-Xizang (Tibet) block.  相似文献   

9.
The reason for the failure to forecast the Wenchuan M_S8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass M_S8.1 earthquake and the 2008 Wenchuan M_S8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a M_S8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of M_S7.0 earthquake and an obvious quietude of M_S5.0 and M_S6.0 earthquakes during 2002~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning’er M_S6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with M_S≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.  相似文献   

10.
The historical earthquake activity is intense in the North China region. However, no middle-sized earthquakes have occurred in the last decades in the region since the MS6.2 earthquake in the Zhangbei region in 1998. The quiescence of moderate and strong earthquakes is quite prominent in North China. In this paper, we use small earthquake records in 1970~2009 to study background seismic activity in the North China region. The spatial distributions of seismic parameters are presented, including b-value, the maximum magnitude and annual occurrence probability of earthquakes of M≥6.0. Our results show regions with low b-value that include the Yuncheng region in the Shanxi rift, the Suqian region located in the Tancheng-Lujiang fault zone and the Shijiazhuang region in the Taihangshan block. Our analysis on the synthetic spatial pattern of seismicity indicate that seismicity in the North China region is mainly affected by the regional dynamic factors of deep structures.  相似文献   

11.
The tectonic characteristics and research problems of five earthquakes with M≥7.0 on the North China Plain over the last 300 years are addressed in the paper, including the cognition that there were no ground fractures in the 1966 Xingtai earthquake, the question caused by the thrust activity of the seismic fault of the Tangshan Earthquake and the discussion of the seismotectonic environment of the 1830 Cixian earthquake and the 1937 Heze earthquake. The author thinks that the main reason for the problems in research of strong earthquake tectonics in the region is that the status of activity of the main tectonics during the Late Quaternary are unknown. This affects the founding of discrimination criteria for seismotectonics of strong earthquakes on the North China Plain. Discriminating the Holocene active faults from the large number of faults is the most effective method for seismic hazard assessment in the area in future.  相似文献   

12.
This paper is a review on earthquake prediction and forecast research,progress in earthquake prediction work and pre-estimation of earthquake hazard degree in China in recent years.It indicates that China is the first country,the government of which has promoted and organized the state administration department on reduction of seismic hazards and ensured the socialization of earthquake prediction and forecast in the world.A program of earthquake prevention and protection and hazard reduction based on the results of research on earthquake occurrence regularities and prediction of earthquake preparation trend has been completed,and hence the socialization of results of earthquake prediction and forecast research can be expected to be in practice.The practical seismological works in last 20 years indicate that the earthquakes are not considered to be unpredictable,but it is a challenge remaining to be accepted.We are willing to cooperate with all friends who are engaged in earthquake prediction and forecas  相似文献   

13.
Migration of strong earthquakes (M≥ 7.0) along the North-South Seismic Belt of China since 1500 AD shows three patterns: Approximately equal time and distance interval migration from N to S, varied patterns of migration from S to N and grouped strong earthquake activity in a certain period over the entire seismic belt. Analysis of strong earthquakes in the past hundred years shows that the seismicity on the North-South Seismic Belt is also associated with strong earthquake activities on the South Asia Seismic Belt which extends from Myanmar to Sumatra, Indonesia. Strong earthquakes on the former belt often lag several months or years behind the quakes occurring on the later belt. So, after the occurrence of the December 26, 2004 Ms8.7 great earthquake off the western coast of Sumatra, Indonesia, the possibility of occurrence of strong earthquakes on the North-South Seismic Belt of China cannot be ignored. The abovementioned migration characteristics of strong earthquakes are related to the northeastward collision and subduction of the India Plate as well as the interaction between the Qinghai-Xizang (Tibet) Plateau and the stable and hard Ordos and Alashan Massifs at its northeastern margin.  相似文献   

14.
Li Ying 《中国地震研究》2007,21(4):379-387
Based on basic data used in compiling the Zonation Map of Earthquake Ground Motion Parameters in China, recent research on seismic safety assessment for engineering sites in central-southern Hunan Province, the new attenuation relationships of moderate earthquakes and the background seismicity data obtained by modern instrumental earthquake records since 1970, a new result of seismic zonation of central-southern Hunan Province is provided. The result shows that the area with PGA=0.05g has obviously increased in the new map compared with the previous one and is relatively consistent with the seismic disaster characteristics of moderate earthquakes that took place in the central-southern part of Hunan in recent years. This result will benefit the research and compilation of a new-generation seismic zonation map of earthquake ground motion parameters and the seismic hazard assessment in the moderate earthquake active regions in the central and eastern part of China.  相似文献   

15.
In view of the correlation between tectonic activity and seismicity, the strong earthquake risk in the North-South Seismic Belt aroused wide concern after the 2014 Yutian Ms7. 3 earthquake. Using the seismic catalog of the China Earthquake Networks Center, the Benioff strain ratio in the North-South Seismic Belt is calculated in 30 days before and after the March 21, 2008 and February 12, 2014 Yutian Ms7. 3 earthquakes. Results show that in a year after the 2008 Yutian Ms7. 3 earthquake, M 〉 5. 0 earthquakes all occurred near the high strain ratio area or the junction between the low and high strain ratio areas, the activity of strong earthquakes obviously coincides with the high strain ratio area, which indicates that these areas have a higher stress level. The Yutian earthquakes promoted the release of small earthquakes in the high stress areas. This research is of certain indicating significance to the study of subsequent strong earthquakes of this region.  相似文献   

16.
正1 SURVEY OF GLOBAL SEISMICITY A total of 20 strong earthquakes with M_S≥7.0 occurred in 2015 throughout the world according to the China Seismic Network(Table 1),including three strong earthquakes with M_S8.0,i.e.,the Nepal strong earthquake with M_S8.1 on April 25,the M_S8.0 earthquake in Ogasawara Islands region on May 30 and the M_S8.2 earthquake in the middle of Chile offshore  相似文献   

17.
With the theory of subcritical crack growth, we can deduce the fundamental equation of regional seismicity acceleration model. Applying this model to intraplate earthquake regions, we select three earthquake subplates: North China Subplate, Chuan-Dian Block and Xinjiang Subplate, and divide the three subplates into seven researched regions by the difference of seismicity and tectonic conditions. With the modified equation given by Sornette and Sammis (1995), we analysis the seismicity of each region. To those strong earthquakes already occurred in these region, the model can give close fitting of magnitude and occurrence time, and the result in this article indicates that the seismicity acceleration model can also be used for describing the seismicity of intraplate. In the article, we give the magnitude and occurrence time of possible strong earthquakes in Shanxi, Ordos, Bole-Tuokexun, Ayinke-Wuqia earthquake regions. In the same subplate or block, the earthquake periods for each earthquake region are similar in time interval. The constant αin model can be used to describe the intensity of regional seismicity, and for the Chinese Mainland, α is 0.4 generally. To the seismicity in Taiwan and other regions with complex tectonic conditions, the model does not fit well at present.  相似文献   

18.
Comparative analysis between the quantitative data of active faults and seismicity reveals that a complete earthquake recurrence cycle includes the characteristic earthquake and the submaxima earthquakes in-between. The magnitude of the sub-maxima events is correlated with the elapsed time of the characteristic earthquake and the slip rate of the fault. The fault displacement includes the major stick-slip generated by the characteristic earthquakes and the minor stick-slip by the sub-maxima ones. The magnitude-frequency relationship still works in the complete recurrence cycle. The energy accumulation in the cycle is divided approximately into four phases, and the seismicity differs at each phase. The relation of the maximum displacement with the average displacement of the characteristic earthquake suggests the partitioning of deformation between the characteristic and the sub-maxima earthquakes. Based on the above analysis, relevant mathematical equations are put forward for the quantitative assessment of the potential magnitude and earthquake risk of seismogenic tectonics. Tentative study has been carried out in this aspect in some areas of Tianshan.  相似文献   

19.
Seismic gap method is one of the effective earthquake prediction methods using seismicity patterns. However, this method has some limitations and uncertainty when using it singly in predicting earthquakes. This paper puts forward the prediction method using the dynamic seismicity pattern with dynamic implications. This method considers the formation and evolution of the seismic gap on the basis of plate movement and structural characteristics. Through analysis of 26 cases of earthquakes of MS≥5.0 occurring in East China and South China, this paper obtains the relationship between the main shock with seismic gap and active fault's location, as well as the relationship between the seismic gap and location and strike of active faults. Meanwhile, this paper provides a dynamic explanation of the differences in the formation and evolution patterns of the seismic gap between the two regions, thus providing the physical basis for and reducing the uncertainty of predicting earthquakes using the seismic gap method.  相似文献   

20.
1 SURVEY OF GLOBAL SEISMICITY IN 2006A total of 15 strong earthquakes with M_S≥7.0 occurred in the world according to the Chinese Seismic Station Network in 2006 (Table 1). The strongest earthquakes were the Kamchatka earthquake with M_S8.0 on March 29 and the Kuril Islands earthquake with M_S8.0 on November 15 (Fig.1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号