首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We document the detailed dynamics of the dayside aurora in the ≈1200–1600 MLT sector in response to a sharp southward turning of the interplanetary magnetic field (IMF) under negative IMF By conditions. Features not documented in previous work are elucidated by using two meridan scanning photometers (separated by 2 h) and an all-sky auroral imager in Ny Ålesund, Svalbard (75.5^MLAT) in combination with magnetograms from stations on Svalbard, covering the latitude range 71^–75^MLAT. The initial auroral response may be divided into three phases consisting of: (1) intensification of both the red (630.0 nm) and green (557.7 nm) line emissions in the cusp aurora near 1200 MLT and ≈100 km equatorward shift of its equatorward boundary, at ≈75^MLAT, (2) eastward and poleward expansions of the cusp aurora, reaching the 1430 MLT meridian after 5–6 min, and (3) east-west expansion of the higher-latitude aurora (at ≈77^–78^MLAT) in the postnoon sector. The associated magnetic disturbance is characterized by an initial positive deflection of the X-component at stations located 100–400 km south of the aurora, corresponding to enhanced Sunward return flow associated with the merging convection cell in the post-noon sector. The sequence of partly overlapping poleward moving auroral forms (PMAFs) during the first 15 min, accompanied by corresponding pulsations in the convection current, was followed by a strong westward contraction of the cusp aurora when the ground magnetograms indicated a temporary return to the pre-onset level. These observations are discussed in relation to the Cowley-Lockwood model of ionospheric response to pulsed magnetopause reconnection.  相似文献   

2.
Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to 2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.  相似文献   

3.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   

4.
太阳活动低年南极中山站电离层F层的平均特性   总被引:9,自引:5,他引:4       下载免费PDF全文
根据1995-1997年3年中山站数字式电离层测高仪的数据,分析了中山站不同季 节F层的临频变化特点.中山站夏季主要受太阳光光化电离的影响,F层临频随地方时的变 化与中纬台站相似;两分季,极隙区软电子沉降的作用显著,F层临频随磁地方时而变化,有 较明显的磁中午现象.冬季,太阳全天处于地平线以下,中山站F层临频的变化主要受极隙 区软电子沉降和极区等离子体漂移的影响,其峰值变化处于碰中午和地方时中午之间.中山 站夏季全天都能观测到F层的存在;两分季F层在地方时子夜附近的出现率较少;冬季月份 在磁地方时午后和子夜F层出现率明显减少,这可能与南半球冬季的高纬槽和极洞有关.对 F层不均匀区的分析认为,中山站在t_(LT)为16:00左右处于极光带赤道侧,20:00左右进入极盖 区。  相似文献   

5.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   

6.
A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz <0). The ionosondes measured electron densities of up to 9 × 1011 m−3 in the patch center, an increase above the density minimum between patches by a factor of ≈4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.  相似文献   

7.
Poleward-moving auroral forms, as observed by meridian-scanning photometers, in the vicinity of the cusp region are generally assumed to be the optical signature of flux transfer events. Another class of quasi-continuous, short period (1–2 min) wave-like auroral emission has been identified, closely co-located with the convection reversal boundary in the post-noon sector, which is similar in appearance to such cusp aurora. It is suggested that these short period wave-like auroral emissions, the optical signature of boundary plasma sheet precipitation in the region 1 field-aligned current system, are associated with ULF magnetohydrodynamic wave activity, which is observed simultaneously by ground magnetometer stations. This association with ULF wave activity is strengthened by the observation of several harmonic frequencies in the pulsation spectrum, each an overtone of the fundamental standing wave resonance frequency.  相似文献   

8.
The CUTLASS Finland radar has been run in a two-beam special scan mode, which offered excellent temporal and spatial information on the flows in the high-latitude ionosphere. A detailed study of one day of this data revealed a convection reversal boundary (CRB) in the CUTLASS field of view (f.o.v) on the dayside, the direction of plasma flow either side of the boundary being typical of a dawn-cell convection pattern. Poleward of the CRB a number of pulsed transients are observed, seemingly moving away from the radar. These transients are identified here as the ionospheric signature of flux transfer events (FTEs). Equatorward of the CRB continuous backscatter was observed, believed to be due to the return flow on closed field lines. The two-beam scan offered a new and innovative opportunity to determine the size and velocity of the ionospheric signatures associated with flux transfer events and the related plasma flow pattern. The transient signature was found to have an azimuthal extent of 1900 ± 900 km and an poleward extent of 250 km. The motion of the transient features was in a predominantly westward azimuthal direction, at a velocity of 7.5 ± 3 km.  相似文献   

9.
Experimental results are presented from ionospheric tomography, the EISCAT Svalbard radar and the CUTLASS HF radar. Tomographic measurements on 10 October 1996, showing a narrow, field-aligned enhancement in electron density in the post-noon sector of the dayside auroral zone, are related to a temporal increase in the plasma concentration observed by the incoherent scatter radar in the region where the HF radar indicated a low velocity sunwards convection. The results demonstrate the complementary nature of these three instruments for polar-cap ionospheric studies.  相似文献   

10.
During the 6th August 1995, the CUTLASS Finland HF radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s. Data from such scans, during the substorm expansion phase, revealed pulses of equatorward flow exceeding 600 m s–1 with a duration of 5 min and a repetition period of 8 min. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. These transient features, which propagate eastwards away from local midnight, have been interpreted as ionospheric current vortices associated with fieldaligned current pairs. The present study reveals that these ionospheric convection features appear to have an accompanying signature in the magnetosphere, comprising a dawnward perturbation and dipolarisation of the magnetic field and dawnward plasma flow, measured in the geomagnetic tail by the Geotail spacecraft, located at L = 10 and some four hours to the east, in the postmidnight sector. These signatures are suggested to be the consequence of the observation of the same field aligned currents in the magnetosphere. Their possible relationship with bursty Earthward plasma flow and magnetotail reconnection is discussed.  相似文献   

11.
南极中山站数字式电离层测高仪的初步观测结果   总被引:5,自引:0,他引:5  
本文介绍数字式电离层测高仪DPS-4的原理和特点,在中山站的安装和调试,从扫频电离图所得到的初步结果表明,中山站冬季电离层F层存在明显的磁中午现象,而电离层Es层与极光粒子沉降有很大关系;漂移测量的结果表明,电离层漂移主要是水平方向的运动,并且具有大体一致的日变化模式,显示出在极区存在逆阳对流。  相似文献   

12.
The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2-and KP for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding 600 m s–1 are observed with a duration of 5 min and a repetition period of 8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.  相似文献   

13.
本文基于2002年至2010年的GRACE卫星的观测密度统计分析南北极点的热层大气密度的世界时(即磁地方时)变化.研究发现:在9—11月份地球处于行星际磁场为背向太阳的扇区内(背向扇区)时,南极点热层密度在约17∶00 UT(13∶30 MLT)达到最大值,比日平均值高约22%;而在6—8月份,当地球处于行星际磁场为面向太阳的扇区内(面向扇区)时,北极点热层密度在06∶00 UT(12∶30 MLT)达到最大值,比日平均值高约13%.南极点的磁纬是-74°,其在15∶30 UT处于磁地方时正午,恰与极尖区位置重合.北极点在5∶30 UT处于磁地方时正午,此时北极点与极尖区位置最靠近.因此,极点热层大气密度的磁地方时变化可能是其周期性靠近极尖区的结果.南北极点热层密度的磁地方时变化分别在背向和面向扇区内更明显,这可能与行星际磁场By分量对南北半球密度的不同影响有关.统计结果还表明,极点热层大气密度的磁地方时变化在冬季半球内不明显.这可能是由于在冬季半球,沉降于极尖区的粒子相比夏季半球少、沉降高度低,因而能量沉降所引起的热层上部的密度增强较小.  相似文献   

14.
综合分析EISCAT雷达与卫星当地测量数据,并利用磁层磁场模式对磁力线进行追踪,研究了发生在极光椭圆朝极盖边界附近电离层中,一例反常的背离太阳流动的强等离子体对流事件,及相关的太阳风-磁层-电离层耦合过程.结果表明,磁暴期间IMFBz指向南时观测到这一反常高速对流,及其相应的等离子体性态特征,很可能是向阳侧磁层顶磁重联过程在电离层中的印记.  相似文献   

15.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

16.
Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.  相似文献   

17.
A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.  相似文献   

18.
利用南极中山站数字式电离层测高仪在1995年的观测数据和IMP8卫星观测的行星际磁场数据进行分析,揭示了南极极隙区纬度的电离层漂移的主要特征:电离层漂移主要是水平方向的运动,并且具有大体一致的日变化模式,在当地时间正午附近存在着指向极点的漂移运动,在晚上时间存在着离开极点的漂移运动,显示出在极区存在着逆阳对流;行星际磁场的平径向分量By在影响极隙区纬度电离层漂移运动方面起着主寻作用。当By<0时,指向极点的漂移运动入口处大约在CGLT的7:00一8:00之间,并且在CGLT的0点左右的漂移运动方向偏西;当By>0时,指向极点的漂移运动人口处大约在CGLT的9:00-10:00之间,并且在CGLT的0点左右的漂移运动方向偏东;南半球的等离子体对流图形大体上与北半球成镜面对称关系.  相似文献   

19.
Spatial structures in ionospheric electron density revealed in a tomographic image have been identified with auroral forms and related to their sources in precipitating particles observed by DMSP satellites. The observations of plasma enhancements relate to discrete auroral arcs seen in the post-noon sector, identified by both red- and green-line emissions measured by a meridional scanning photometer. The features lie within a very narrow latitudinal band on L-shells where the satellite detectors observed electron precipitation classified as from the boundary plasma sheet (BPS). The harder particles are identified with an E-region structure, while further north the precipitation is softer, resulting in a localised F-layer blob and 630.0 nm emissions. A steep gradient in plasma density represent a signature in the ionosphere of the central plasma sheet (CPS)/BPS boundary. A transition to a less-structured F-layer is found on crossing the convection reversal boundary.On leave from Artic Geophysics, University Course on Svalbard (UNIS), N-9170 Longyearbyen, Norway  相似文献   

20.
本文利用北半球的超级双极光雷达网数据,考察了一次行星际磁场南向突变时高纬电离层对流的响应特征,着重分析了响应的时间尺度. 对所研究的事件,行星际磁场南北分量在1.5 min内从+7 nT突变到-8 nT,而在突变前后约40 min内都保持相对稳定. 结果表明,电离层对流的初始响应发生在磁正午附近,相对于行星际磁场突变到达磁层顶的时间有大约3 min的滞后;响应与磁地方时有明显依赖关系,离磁正午越远,响应的滞后时间越长,晨昏两侧的对流响应比磁正午滞后约6 min,磁午夜的对流响应比磁正午滞后约12 min;对流重新趋于稳定的时间与磁地方时没有明显的依赖关系,该时间尺度约为10~14 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号