首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In a closed gravitationally-bound Universe we are subject to an inward accelerationa 0. One consequence of this acceleration is that matter will radiate and create a black-body spectrum throughout the Universe. Using the valuea 0=7.623×10–12 ms–2 and a radiation formula from a previously-described cosmological model (Wåhlin, 1981), we obtain a black-body temperature of 2.766 K.  相似文献   

2.
The analysis of the Th/U ratio in meteorites and the evolutionary ages of globular clusters favour values of the cosmic age of (19±5)×109 yr. This evidence together with a Hubble parameterH 0>70 km s–1 Mpc–1=(14×109 yr)–1 cannot be reconciled in a Friedmann model with =0. It requires a cosmological constant in the order of 10–56 cm–2, equivalent to a vacuum density v =10–29 g cm–3 The Friedmann-Lemaître models (>0) with a hot big-bang have been calculated. They are based on a present value of the baryonic matter density of 0=0.5×10–30 g cm–3 as derived from the primordial4He and2H abundances.For a Hubble parameter ofH 0=75 km s–1 Mpc–1, our analysis favours a set of models which can be represented by a model with Euclidean metric (density parameter 0=1.0, deceleration parameterq 0=–0.93, aget 0=19.7×109 yr) and by a closed model with perpetual expansion (0=1.072,q 0=–1.0, aget 0=21.4×109 yr). A present density parameter close to one can indeed be expected if the conjecture of an exponential inflation of the very early universe is correct.The possible behaviour of the vacuum density is demonstrated with the help of Streeruwitz' formula in the context of the closed model with an inflationary phase at very early times.  相似文献   

3.
Newtonian cosmology is developed with the assumption that the gravitational constantG diminishes with time. The functional form adopted forG(t), a modification of a suggestion of Dirac, isG=A(k+t) –1, wheret is the age of the Universe and a small constantk is inserted to avoid a singularity in the two-body problem. IfR is the scale factor, normalized to unity at an epoch time , the differential equation is then . Here 0 is the mean density at the epoch time. With the above form forG(t), the solution is reducible to quadratures.The scale factorR either increases indefinitely or has one and only one maximum. LetH 0 be the present value of Hubble's constant /R and 0c the minimum density for a maximum ofR, i.e., for closure of the Universe. The conditions for a maximum lead to a boundary curve of 0c versusH 0 and the numbers indicate strongly that thisG-variable Newtonian model corresponds to an open universe. An upward estimate of the age of the Universe from 1010 yr to five times such a value would still lead to the same conclusion.The present Newtonian cosmology appears to refute the statement, sometimes made, that the Dirac model forG necessarily leads to the conclusion that the age of the Universe is one-third the Hubble time. Appendix B treats this point, explaining that this incorrect conclusion arises from using all the assumptions in Dirac (1938). The present paper uses only Dirac's final result, viz,G(k+t)–1, superposing it on the differential equation .  相似文献   

4.
In a previous paper Lyttleton (1976) has shown that the apparent secular accelerations of the Sun and Moon, as given by de Sitter, can be largely explained if the Earth is contracting at the rate required by the phase-change hypothesis for the nature of the core. More reliable values for these accelerations have since become available which warrant a redetermination of the various effects concerned on the basis of constantG, and this is first carried out in the present paper. The lunar tidal couple, which is the same whetherG is changing or not, is found to be (4.74±0.38)×1023 cgs, about three-quarters that yielded by the de Sitter values, while within the theory the Moon would take correspondingly longer to reach close proximity to the Earth at about 1.5×109 years ago.The more accurate values of the accelerations enable examination to be made of the effects that a decreasingG would have, and it is shown that a valueG/G=–3×10–11 yr–1 can be weakly satisfied compared with the close agreement found on the basis of constantG, while a value as large numerically asG/G=–6×10–11 yr–1 seems to be definitely ruled out. On the iron-core model, an intrinsic positive component of acceleration of the angular velocity cannot be reconciled at all with the secular accelerations even for constantG, and far less so ifG is decreasing at a rate suggested by any recent cosmological theory.ItG=0, the amount of contraction available for mountain-building would correspond to a reduction of surface area of about 49×106 km2 and a volume to be redistributed of 160×109 km3 if the time of collapse were 2.5×109 years ago. For earlier times, the values are only slightly reduced. IfG/G=–3×10–11 yr–1, the corresponding values are 44×106 km2 and 138×109 km3 for collapse at –2.5×109 yr, and not importantly smaller at 38×106 km2 and 122×109 km3 for collapse at –4.5×109 yr. Any of these values would suffice to account in order of magnitude for all the eras of mountain-building. An intense brief period of mountain-building on an immense scale would result from the Ramsey-collapse at whatever time past it may have occurred.  相似文献   

5.
We have investigated the effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM). If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5×105 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This results in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature ofT=1.5×105 K, the temperature of the ionized gas in the IGM isT g =1.2×105 K for a Hubble constantH o=75 km s–1 Mpc–1 and a hydrogen densityn H =10–6 cm–3. Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps inHi clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross-sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5×104 K, the temperature of the IGM could be lowered to about 5×104 K.  相似文献   

6.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

7.
The gravitational instability of a nonrotating isothermal gaseous disk permeated by a uniform frozen-in magnetic field is investigated using a fourth-order perturbation technique. From the results it is found that the disk is stable whenn/B 0 < (4/33 G)–1/2, wheren andB are the column density of the disk and unperturbed magnetic field, respectively, andG is the gravitational constant. The disk is gravitationally unstable only whenn/B 0 > (4/33 G)–1/2.  相似文献   

8.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

9.
Colliding comets in the Solar System may be an important source of gamma ray bursts. The spherical gamma ray comet cloud required by the results of the Venera Satellites (Mazets and Golenetskii, 1987) and the BATSE detector on the Compton Satellite (Meeganet al., 1992a, b) is neither the Oort Cloud nor the Kuiper Belt. To satisfy observations ofN(>P max) vsP max for the maximum gamma ray fluxes,P max > 10–5 erg cm–2 s–1 (about 30 bursts yr–1), the comet density,n, should increase asn a 1 from about 40 to 100 AU wherea is the comet heliocentric distance. The turnover above 100 AU requiresn a –1/2 to 200 AU to fit the Venera results andn a 1/4 to 400 AU to fit the BATSE data. Then the masses of comets in the 3 regions are from: 40–100 AU, about 9 earth masses,m E; 100–200 AU about 25m E; and 100–400 AU, about 900m E. The flux of 10–5 erg cm–2 s–1 corresponds to a luminosity at 100 AU of 3 × 1026 erg s–1. Two colliding spherical comets at a distance of 100 AU, each with nucleus of radiusR of 5 km, density of 0.5 g cm–3 and Keplerian velocity 3 km s–1 have a combined kinetic energy of 3 × 1028 erg, a factor of about 100 greater than required by the burst maximum fluxes that last for one second. Betatron acceleration in the compressed magnetic fields between the colliding comets could accelerate electrons to energies sufficient to produce the observed high energy gamma rays. Many of the additional observed features of gamma ray bursts can be explained by the solar comet collision source.  相似文献   

10.
From the observed present parameters of the Universe and the model properties of an expansive non-decelerative universe it results that the value of Boltzmann's constant (coefficient)k does not change only before the end of radiation era, but also in the matter era; with the increase of gauge factora, it decreases as (a –1)1/4.  相似文献   

11.
The isotropic cumulative burst rate of 7030 –6000 +10000 yr–1 at a fluence ofS=8.47×10–9 erg–1 cm–2 determined by Beurleet al. from their observation of two gamma-ray bursts is shown to be statistically improbable. The difficulty arises from their assumption that the power law cumulative distribution function index equals one. Their observations are rediscussed and an upper limit ofN(>8.47×10–9 erg cm–2)<5400 yr–1 is proposed.  相似文献   

12.
Within the framework of FLRW cosmology withk=+1 a singularity free model of the Universe is proposed which readily accounts for the origin of the Big-Bang and for the preponderance of matter over anti-matter. It is also free from the problems of accounting for the observed large-scale homogeneity and isotropy of the Universe as well as from the problems of horizon and flatness. It is pointed out that the collapsing universe might have acted as an ultra-high energy particle accelerator. In the collapsing phase of the Universe, when the interparticle distances10–16 cm, the electromagnetic and weak interactions might have unified into electroweak interaction and as the collapse proceeded further the entire matter in the Universe might have been converted into quark-gluon plasma permeated by leptons. The gravitational energy released during the collapse might have been locked in this plasma. Ass approached 10–28 cm, grand unification of electroweak and strong interactions might have occurred. It is also suggested that, with further collapse, whens<10–33 cm super-symmetry (SUSY)—i.e., the unification of all the four interactions (viz., electromagnetic, weak, strong, and gravitational) might have occurred. During this process gravitinos, the supersymmetric partners of graviton might have been produced. As a result of the exchange of a pair of virtual gravitinos between two particles an ultra-strong repulsive force between them might have been generated. Due to this ultra-strong repulsive interaction between particles the motion of the Universe might have been reversed, i.e., the Universe might have started expanding. During expansion, whens10–28 cm, SUSY might have broken down spontaneously toSU 5 and gravity. Ass increased from 10–28 to 10–16 cm, the gravitational energy locked in the quark-gluon plasma might have been released with a gigantic explosion, the so-called Big-Bang. It is estimated here that during this Big-Bang more than 1082 GeV of energy might have been released. Whens10–16 cm,SU 5 might have broken down spontaneously toSU 3 andU 1. Expansion beyond this stage might have occurred in the manner described by the standard cosmology. It is further suggested that in due course of time expansion will be followed by contraction and the cycle of contraction-expansion-contraction will be repeated ad infinitum.  相似文献   

13.
Lunar physical librations and laser ranging   总被引:1,自引:0,他引:1  
The analysis of lunar laser ranging data requires very accurate calculations of the lunar physical librations. Libration terms are given which arise from the additive and planetary terms in the lunar theory. The large size of the recently discovered terms due to third degree gravitational harmonics will allow some of these harmonics to be measured, in addition to and, by laser ranging to the Moon. Combining the laser ranging determinations of = 630.6 ± 0.5 × 10–6 and = 226.4 ± 3.0 × 10–6 with lunar orbiter measurements ofC 20 andC 22 givesC/MR 2=0.395 -0.010 +0.006 . Numerical integration promises to be an effective method of calculating librations. Comparison of numerical integrations with analytic series indicates that the calculation of the series due to third and fourth degree harmonics is not yet as accurate as the more extensively developed second degree terms.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

14.
The time variation of the gravitational constantG is discussed in the light of the gravity modified form of quantum electrodynamics. From the experimental upper limit |a/| < 5 × 10–15 yr–1 on the time variation of the electromagnetic fine structure constant one finds |/G| < 5 × 10–13 yr–1.  相似文献   

15.
It is shown that cosmic radiation almost follows a Planck distribution, because just as matter is formed, its density of energy is negligible in comparison with that of radiation, and that the present age of the Universe does not depend on the particular manner in which the matter is formed.Thus, if the results of the latest observations (which imply a deceleration parameterq=1.6) are combined with the assumption that the present age of the Universe is at least 12×109 yr, they lead to a hyperbolic oscillating universe with a negative cosmological constant (<–1.53×10–56 cm–2) and a present mass-density m of less than 1.2×10–30 g cm–3. If the cosmological constant is taken to be zero, a solution is only possible if we are prepared to admit a rate of evolution of galaxies with a deceleration parameterq<0.52. Three types of oscillating universe are then possible, but the heperbolic type is the most probable. If Hubble's constant is greater than 63.4 km s–1 Mpc–1, the solutions are only hyperbolic universes with <+0.45×10–56 cm–2 and m <4.8×10-30g cm-3.
Sommaire On montre que le rayonnement cosmique général suit pratiquement une loi de Planck parce que la densité d'énergie de la matière au moment de sa formation est négligeable à côté de celle du rayonnement et que l'âge actuel de l'Univers ne dépend pas du mode de formation de la matière.Dans ces conditions, si l'on combine les derniers résultats d'observations (qui impliquent un paramètre de décélérationq=1.6) avec l'hypothèse que l'âge actuel de l'Univers est au moins de 12×109 années on est conduit à un Univers hyperbolique oscillant à constante cosmologique négative (<–1.53×10–56 cm–2) et où l'actuelle densité de matière m est moindre que 1.2×10–30 g cm–3. Si la constante cosmologique est supposée nulle, une solution ne peut être obtenue que si l'on admet un certain taux d'évolution des Galaxies et un paramètre de décélérationq<0.52. Alors, les trois types d'Univers oscillants sont possibles, mains les Univers hyperboliques paraissent plus probables. Enfin, si la constante de Hubble est plus grande que 63.4 km s–1 Mpc–1 les solutions ne peuvent être que des Univers hyperboliques avec <+0.45×10–56 cm–2 et m <4.8×10-30g cm-3.
  相似文献   

16.
Structures of Newtonian super-massive stars are calculated with the opacity for Comptor effectK 0/(1 + T), whereK 0=0.21(1 +X and =2.2×10–9K–1. The track of the Main-Sequence is turned right in the upper part of the HR diagram. Mass loss will occur in a Main-Sequence stage for a star with mass larger than a critical mass. The cause of mass loss and the expansion of the radius is continuum radiation pressure. The critical mass for mass loss is 1.02×106 M for a Population I star, and 1.23×105 M for Population III star. Mass loss rates expected in these stars are 3.3×10–3 and 4.0×10–3 M yr–1, respectively.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

17.
Elemental abundances of the VH group of cosmic radiation have been measured in the energy interval 250–550 MeV nucl–1 in a balloon exposure at Sioux Falls (South Dakota) of a plastic detector LeXAN stack. The so obtained abundances have been extrapolated to the sources in the frame of the homogeneous model correcting for energy loss. After taking into account solar modulation, the best fit to model values has led to a escape mean free path e = 5E –0.4 g cm–2, whereE is the energy in GeV nucl–1, forE>1 GeV nucl–1, and a constant e = 5 g cm–2 forE1 GeV nucl–1. When turning to the diffusion model, also including an energy loss term, a diffusion coefficientD=3×1028 cm2 s–1 has been estimated.  相似文献   

18.
Strong absorption satellite lines of CaI 6572 were found on spectrograms taken on three successive days just after the fourth contact of the 1971–72 eclipse of Zeta Aurigae. The radial velocities of the satellite lines are –88 km s–1, –74 km s–1, and –180 km–1, respectively, relative to the K-type primary star (K4 Ib). These absorptions should be due to a circumstellar cloud in which the column density of neutral calcium atoms is 1×1017 cm–2 and the turbulent velocities come to 20–50 km s–1. It is suggested that the cloud may be formed by the rocket-effect of the Lyman quanta of the B-type component (B6 V). We estimate the density in the cloud to be 2×1011 atoms cm–3 fors=10R K and 2×1010 atoms cm–3 fors=102 R K, wheres denotes the distance of the cloud from the K star andR K the K star's radius. The mass loss rate of the K-type component is also estimated to be about 10–7 M yr–1, assuming that the expansion of the K star occurs isotropically.  相似文献   

19.
Energetic particle (0.1 to 100 MeV protons) acceleration is studied by using high resolution interplanetary magnetic field and plasma measurements at 1 AU (HEOS-2) and at 5 AU (Pioneer 10). Energy changes of a particle population are followed by computing test particle trajectories and the energy changes through the particle interaction with the time varying magnetic field. The results show that considerable particle acceleration takes place throughout the interplanetary medium, both in the corotating interaction regions (CIR) (5 AU), and in quiet regions (1 AU). Although shocks may contribute to acceleration we suggest statistical acceleration within the CIRs is sufficient to explain most energetic particle observations (e.g., McDonaldet al., 1975; Barnes and Simpson, 1976).The first and second order statistical acceleration coefficients which include transit time damping and Alfvén resonance interactions, are found to be well represented byD T 8.5×10–6 T 0.5 MeV s–1 andD TT 4×10–6 T 1.5 MeV2 s–1 at 5 AU.By comparison, Fisk's estimates (1976), based on quasi-linear theory for transit-time damping, gaveD TT 5×10–7 T MeV2 s–1 at 1 AU.  相似文献   

20.
While Euclidean models with uniform matter density have a number of radio sources of flux density greater thanF at frequencyv that varies asN(>F, v)1 F –3/2, hierarchical models with = 0 r –2 haveN(>F,)F –1/2 (Section 1). Since the observed dependency isN(>F,)F –1.8, severe density and/or luminosity evolution must be present in a workable hierarchical cosmology (Section 2). The same argument applies (Section 3) to the number of sources of apparent luminosity greater thanl,N(>l) and (Section 4) to the number of sources within redshift distancez from the local origin. To give agreement with empirical data demandsq o=+1 and large first and second derivatives with respect to time of the number source density (Section 5). The adoption ofq o=+1 allows one to show (Section 6) that a Lemaitre-type hierarchical Universe with a long coasting or waiting time can give agreement with observations of the numbers of QSO's etc. if the age of the Universe is more than 1013 yr. The dependence of the effective Hubble parameter onk(t), (t) andR (Section 7) leads one to suggest that ak=0, =0 hierarchy with 0 might be the simplest acceptable form of model Universe. Section 8 (Conclusion) points out that further data on source count anisotropies should allow the component levels of the hierarchy to be delineated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号