首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We consider accreting systems in which the central object interacts, via the agency of its magnetic field, with the disc that surrounds it. The disc is turbulent and, so, has a finite effective conductivity. The field sweeps across the face of the disc, thereby forming a current that is directed radially within the disc. In turn, this disc current creates a toroidal field, where the interaction between the disc current and the toroidal field produces a Lorentz force that compresses the disc. We investigate this compression, which creates a magnetic scaleheight of the disc that can be much smaller than the conventional scaleheight. We derive an analytic expression for the magnetic scaleheight and apply it to fully ionized discs.  相似文献   

5.
We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The three-dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou . In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outwardly and allows mass to accrete inwardly. The instability takes the form of a m =1 rotating 'crescent', reminiscent of the purely hydrodynamic non-linear instability previously found in pressure-supported discs. A model where the initial surface mass density Σ( r ) and B z ( r ) decrease with radius as power laws shows transient mass accretion during about six orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.  相似文献   

6.
7.
The dynamics of accretion discs around galactic and extragalactic black holes may be influenced by their magnetic field. In this paper, we generalize the fully relativistic theory of stationary axisymmetric tori in Kerr metric of Abramowicz, Jaroszynski & Sikora by including strong toroidal magnetic field and construct analytic solutions for barotropic tori with constant angular momentum. This development is particularly important for the general relativistic computational magnetohydrodynamics that suffers from the lack of exact analytic solutions that are needed to test computer codes.  相似文献   

8.
The presence of an imposed vertical magnetic field may drastically influence the structure of thin accretion discs. If the field is sufficiently strong, the rotation law can depart from the Keplerian one. We consider the structure of a disc for a given eddy magnetic diffusivity but neglect details of the energy transport. The magnetic field is assumed to be in balance with the internal energy of the accretion flow. The thickness of the disc as well as the turbulent magnetic Prandtl number and the viscosity, α , are the key parameters of our model. The calculations show that the radial velocity can reach the sound speed for a magnetic disc if the thickness is comparable to that of a non-magnetic one. This leads to a strong amplification of the accretion rate for a given surface density. The inclination angle of the magnetic field lines can exceed the critical value 30° (required to launch cold jets) even for a relatively small magnetic Prandtl number of order unity. The toroidal magnetic fields induced at the disc surface are smaller than predicted in previous studies.  相似文献   

9.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

10.
11.
12.
We show that recently published assertions that advection-dominated accretion flows (ADAFs) require the presence of strong winds are unfounded because they assume that low radiative efficiency in flows accreting at low rates on to black holes implies vanishing radial energy and angular momentum fluxes through the flow (which is also formulated in terms of the 'Bernoulli function' being positive). This, however, is a property only of self-similar solutions which are an inadequate representation of global accretion flows. We recall general properties of accretion flows on to black holes and show that such, necessarily transonic, flows may have either d positive or negative Bernoulli function depending on the flow viscosity. Flows with low viscosities ( α ≲0.1 in the α -viscosity model) have a negative Bernoulli function. Without exception, all 2D and 1D numerical models of low-viscosity flows constructed to date experience no significant outflows. At high viscosities the presence of outflows depends on the assumed viscosity, on the equation of state and on the outer boundary condition. The positive sign of the Bernoulli function invoked in this context is irrelevant to the presence of outflows. As an illustration, we recall 2D numerical models with moderate viscosity that have positive values of the Bernoulli function and experience no outflows. ADAFs, therefore, do not differ from this point of view from thin Keplerian discs: they may have, but they do not have to have, strong winds.  相似文献   

13.
The observation of the hot gas surrounding Sgr A * and a few other nearby galactic nuclei imply that electron and proton mean free paths are comparable to the gas capture radius. So, the hot accretion flows are likely to proceed under week-collision conditions. Hence, thermal conduction has been suggested as a possible mechanism by which the sufficient extra heating is provided in hot advection-dominated accretion flow (ADAF) accretion discs. We consider the effects of thermal conduction in the presence of a toroidal magnetic field in an ADAF around a compact object. For a steady-state structure of such accretion flows, a set of self-similar solutions are presented. We find two types of solutions which represent high and slow accretion rate. They have different behaviours with saturated thermal conduction parameter, φ.  相似文献   

14.
In addition to the scalar Shakura–Sunyaev α ss turbulent viscosity transport term used in simple analytic accretion disc modelling, a pseudo-scalar transport term also arises. The essence of this term can be captured even in simple models for which vertical averaging is interpreted as integration over a half-thickness and each hemisphere is separately studied. The additional term highlights a complementarity between mean field magnetic dynamo theory and accretion disc theory treated as a mean field theory. Such pseudo-scalar terms have been studied, and can lead to large-scale magnetic field and vorticity growth. Here it is shown that vorticity can grow even in the simplest azimuthal and half-height integrated disc model, for which mean quantities depend only on radius. The simplest vorticity growth solutions seem to have scales and vortex survival times consistent with those required for facilitating planet formation. In addition, it is shown that, when the magnetic back-reaction is included to lowest order, the pseudo-scalar driving the magnetic field growth and that driving the vorticity growth will behave differently with respect to shearing and non-shearing flows: the former pseudo‐scalar can more easily reverse sign in the two cases.  相似文献   

15.
16.
17.
A model is presented for an accretion disc with turbulent viscosity and a magnetically influenced wind. The magnetic field is generated by a dynamo in the disc, involving the turbulence and radial shear. Disc-wind solutions are found for which the wind mass flux is sufficient to play a major part in driving an imposed steady inflow, but small enough for most material to be accreted on to the central object. Constraints arise for the magnetic Reynolds and Prandtl numbers in terms of the turbulent Mach number and vertical length-scale of the disc's horizontal magnetic field. It is shown that the imposition of a stellar boundary condition enhances the wind mass flux in the very inner region of the disc and may result in jet formation.  相似文献   

18.
A semi-analytic method is presented for solving for the radial and vertical structures of an accretion disc, with a magnetically channelled wind flowing from its surfaces. Both magnetic and turbulent viscous effects are taken into account, and the essential wind properties are related to the disc structure. The angular momentum removed by the wind plays a major part in driving the inflow through the disc, with photospheric temperatures being sufficient to generate the required wind mass flux. The magnetic field is generated by an αω-dynamo, but the method of solution should have application with other magnetic field sources. Self-consistent disc-wind solutions result, with rms turbulent Mach numbers which are in good agreement with those found in simulations of turbulence generated from magnetic shearing instabilities.  相似文献   

19.
We show that radiation-dominated accretion discs are likely to suffer from a 'photon bubble' instability similar to that described by Arons in the context of accretion on to neutron star polar caps. The instability requires a magnetic field for its existence. In an asymptotic regime appropriate to accretion discs, we find that the overstable modes obey the remarkably simple dispersion relation
ο2=−i gkF ( B , k ).
Here g is the vertical gravitational acceleration, B is the magnetic field, and F is a geometric factor of order unity that depends on the relative orientation of the magnetic field and the wavevector. In the non-linear outcome it seems likely that the instability will enhance vertical energy transport and thereby change the structure of the innermost parts of relativistic accretion discs.  相似文献   

20.
This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting magnetic topology is dependent on the details of magnetic helicity injection, namely the force-free state eigenvalue α gun imposed by the coaxial gun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号