首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the characterization of sediments, Computer Controlled Scanning Electron Microscopy (CCSEM) is a powerful method in obtaining chemical data on individual mineral grains and modal analysis of the heavy mineral fraction of sediment samples. Here we show how the CCSEM method can be used to evaluate ilmenite ore grade as well as a tool to investigate the source of heavy mineral deposits.The heavy mineral rich deposits in beach sands around the town of Chavara in SW India are characterized by ilmenite with elevated TiO2 contents, often exceeding 60 wt.%. In order to determine the origin of these high-TiO2 ilmenite deposits, we collected a series of beach sediment samples (22) from a c. 800 km long stretch of coastline from northern Kerala state to well within the Tamil Nadu state. A set (7) of river sediments was also taken, roughly covering the catchment area to the beach samples. The data show that the sediments in the Chavara high-Ti ilmenite deposit are distinguished by minor elements in ilmenite, garnet chemistry and heavy mineral assemblage: Chavara ilmenite has high MgO and low MnO contents; garnets have low grossular components and the heavy mineral assemblage is dominated by sillimanite–kyanite in addition to ilmenite. These features correlate with basement geology in the hinterland, and with sediments from rivers, draining the basement. Based on these observations we conclude that high-Ti ilmenite from Chavara beaches originates in the khondalite belt of high-grade metasediments. Our study demonstrates rapid mineral analyses in sediments by CCSEM to be efficient in the characterization of mineral compositions and assemblages in sediments, in the identification of possible source regions and thus ultimately in exploration for industrial mineral resources.  相似文献   

2.
The effect of mineralogy and texture of Qara-aghaj ilmenite concentrate on titanium dioxide prepared via reduction-slagging acid leaching process as a raw material in chloride route was investigated. The concentrate contains 44.5 % TiO2 and its content in ilmenite lattice varies from 41.6–48 %. Hematite exsolved lamellae inside ilmenite which affect the reduction process positively are host of the most of the Cr and V as pigment colorizer metals. Apatite fine inclusions inside ilmenite as the source of Ca and P could have negative effects on synthetic rutile. Spinel ultrafine particles inside ilmenite containing Al and Si could also affect the synthetic rutile negatively. The other important elements which have been substituted in ilmenite lattice are Mg and Mn. The prepared titanium dioxide concentrate containing 91 % TiO2 and 0.6 % Fe2O3 is mainly formed by rutile and small amount of anatase and Ti2O3 phases. The solid solution of rutile inside Ti2O3 was also observed. The content of Cr, V, Mn, and Al are decreased to permissible amount during slagging and leaching process while the quantity of other impurities such as Mg, Si, and Ca are relatively high in the product, and they cause some difficulties in pigment production via chloride route. The Mg and Ca sourced from ilmenite lattice and apatite inclusions, respectively, can affect the precipitation process. So, it is predicted that Qara-aghaj ilmenite concentrate will be suitable for sulfate route, but it is necessary to investigate comprehensively.  相似文献   

3.
Estimation of metamorphic pressures in low temperature eclogite (Type C) is difficult because of the high variance mineral assemblages and problems in geothermometry, solution properties of low-temperature omphacite, and the thermodynamic properties of clinozoisite. We have considered equilibria in the CaO–FeO–MgO–TiO2–Al2O3–SiO2–H2O (CFMTASH) system involving the phase components, quartz, rutile, kyanite, ilmenite, almandine, pyrope, grossular, clinozoisite, sphene, diopside, and H2O-fluid There are four linearly independent equilibria involving the phase components in this system. Because kyanite can crystallize as a nearly pure phase, the lack of kyanite in a rock indicates that a Al2SiO5 is<1.0. If we can estimate temperature independently, we can solve for a Al2SiO5 and pressure by using two of the equilibria in isothermal pressure-activity diagrams. We have applied this approach to eclogites from New Caledonia and from southwestern Oregon. For the New Caledonia eclogites, calculated pressures range from 11.2 to 13.6 kbar at 500°C, and are consistent with the minimum pressures based upon the presence of jadeitic pyroxene+quartz and the lack of stable albite. Oregon eclogites come from different tectonic blocks and calculated minimum pressures of 11–12 kbar are based upon the presence of jadeitic pyroxene+rutile+garnet and lack of stable albite and ilmenite at reduced values of a SiO2 (0.7–0.9).  相似文献   

4.
The Egyptian black sands contain several economic minerals, such as ilmenite, magnetite, garnet, zircon, rutile and monazite. During the concentration and separation of a high-grade rutile concentrate a bulk magnetic fraction is obtained. This fraction is composed mainly of opaques, titanhematite, ilmenite–titanhematite exsolved intergrown grains, magnetic leucoxene in addition to chromite, and magnetic rutile. The magnetic rutile occupies 6 wt.% of the bulk magnetic fraction or approx. 4 wt.% of the original rutile content in the raw sands. Most of magnetic rutile crystals are contaminated with opaque inclusions, staining-coating and/or composite locked grains. This magnetic rutile has a magnetic range from strongly paramagnetic to very weak paramagnetic. Electron microprobe analysis for twenty-three magnetic rutile grains identified mineral components of rutile, titanhematite, pseudorutile, leached pseudorutile and ilmenite in decreasing order of abundance. Some other inclusions are also detected in the different magnetic rutile grains. They are most probably garnet, silica, amphibole, ilmenite, feldspar, mica and zircon. The presence of these inclusions reflect the derivation of magnetic rutile of various crystalline igneous and metamorphic rocks. The magnetic susceptibility of magnetic rutile depends on the associated mineral components and their relative volumes in comparison to the rutile mineral component. Magnetic susceptibility of magnetic rutile is also related to both type and size of the associated mineral inclusions. The average chemical composition of the magnetic rutile is 66.34 wt.% TiO2, 21.71 wt.% Fe2O3, 6.39 wt.% SiO2, 1.80 wt.% Al2O3, 1.19 wt.% CaO and 0.10 wt.% Cr2O3. Thus, the contamination of magnetic rutile in the non-magnetic rutile concentrate would decrease the market value of the rutile concentrate. Alternatively these magnetic rutile grains are recommended to be blended with magnetic leucoxene or some types of ilmenite concentrate to improve the overall marketable specifications especially for both of Ti, Fe and Cr contents.  相似文献   

5.
Manganoan ilmenite with a variable manganese content occurs as an early accessory constituent of granitic rocks in the Ôsumi Peninsula, southern Kyushu. Electron probe micro-analysis of a grain containing highest manganese gives the structural formula (Fe 1.23 2+ Mn 0.81 2+ ) (Ti1.97) O6, if all of the manganese and iron are in the divalent state. The manganese content of manganoan ilmenite increases with an increase of the differentiation index of host rocks, however, the amount of ilmenite tends to decrease with the increase of the same index. The mode of occurrence of the ilmenite suggests that it is the first mafic mineral to precipitate from the magma. The average value of the distribution coefficient of manganese and ferrous iron between ilmenite and granitic magma is 5.5, if the Mn/Fe ratio of the granitic rocks represents that of granitic magma. The variation in the FeO and MnO contents against the differentiation index for granitic rocks of the Ôsumi Peninsula, and the value of the distribution coefficient, show that high manganoan ilmenite is stable in the most differentiated granitic rock of the Ôsumi Peninsula.  相似文献   

6.
Oxide–sulphide–Fe–Mg–silicate and titanite–ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high‐grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo‐ilmenite in the high‐grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe–Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite–pyrite micro‐veins along silicate grain boundaries formed over a wide range of post‐peak metamorphic temperatures and pressures ranging from high‐grade SO2 to low‐grade H2S‐dominated conditions. Oxygen fugacities estimated from the orthopyroxene–magnetite–quartz, orthopyroxene–hematite–quartz, and magnetite–hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high‐grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase.  相似文献   

7.
Indian beach placer sand deposits are, in general, ilmenite-rich. However, some concentrations are dominated by pyriboles. The Chavakkad-Ponnani (CP) area along the northern Kerala coast is one such deposit. This paper deals with the general character of the heavy minerals of CP with special emphasis on the characters of ilmenite. Most Indian beach sand ilmenites are of good quality. However, our observations on the ilmenites of CP using Optical Microscope, SEM and EPMA reveals that these are mineralogically very complex. The CP ilmenite varies from pure ilmenite to highly impure variety having intergrowths and inclusions of other oxide and silicate minerals. Ilmenite occurs as mixcrystals and forms intergrowth structure with hematite and Ti-hematite/ulvöspinel; contains inclusions of hematite, quartz, and monazite. On the other hand ilmenite also occurs as inclusions within hematite and garnet. The pyriboles are dominantly amphiboles with hornblende-composition. Interestingly an inclusion of gold has been recorded within amphibole of hornblende composition. Garnets are mostly of almandine and pyrope type. Subordinate heavy minerals are sillimanite, zircon and rutile. Characteristic morphology, mineralogy and chemistry of amphibole, garnet and ilmenite together indicate that the placer sands of CP area are derived from the amphibolites, granite gneisses and basic igneous rocks lying in the hinterland towards the eastern border of Kerala. Though the overall quality of ilmenite is poor, highgrade ilmenite concentrate can be generated (of course with lower yield), by adopting precise mineral processing techniques. The CP deposit can be considered as a second-grade deposit but it has potential for future exploitation.  相似文献   

8.
Hogbomite,a rare exotic mineral,is found to be associated with the vanadiferous-titaniferous (V-Ti) bearing magnetite bands at Bhakatarhalli,Nuggihaifi greenstone belt,western Dharwar Craton,India.We report on a second occurrence of hogbomite from the Dharwar craton in Karnataka,which is the sixth documented occurrence of this mineral from India.We evaluate the chemical characteristics of hogbomite and associated Fe-Ti-minerals in an attempt to identify its formation as a primary hydrothermal mineral in a metamorphosed magnetite layer.We report here the presence of hogbomite as a complex oxide of Fe,Mg,Al and Ti with accessory of Zn,V and Sn.Petrographic studies suggest the (V-Ti) bearing magnetite (Mt) contain spinel,hogbomite,chlorite,martite,ilmenite (Ⅱ) and minor amounts of diaspore.The hogbomite displays euhedral to subhedral textures,and is up to 250 μm along the grain boundaries of magnetite and ilmenite.In the samples studied,hogbomite is prismatic,irregular and elongated in shape.The genesis of hogbomite in veins between magnetite and ilmenite implies its precipitation from fluids without involving complicated reactions.Several models were proposed for the formation of hogbomite; however,the subject is still debatable.  相似文献   

9.
Mineral concentration and ilmenite characterization of the Thothapally — Kayamkulam Barrier Island of the southern Kerala has been studied. 96.86% concentrations of heavy minerals are recorded in the surficial and core samples (4 m) in the southern Kayamkulam and northern Thothapally areas. The total heavy mineral content decreases with depth. The primary heavy mineral suite of the surficial and core samples consists of ilmenite, sillimanite, zircon, garnets, rutile, monazite and magnetite. Longshore current and onshore-offshore movements of sediment during the southwest monsoon are primarily responsible in sorting of the heavy minerals. TiO2 content in ilmenite is significantly higher in the Kayamkulam core sediments than the surface samples. XRD analysis supports intensive weathering and alteration leading to the higher TiO2 concentration. Higher percentage of ferric iron than ferrous iron in the core samples reveals that considerable weathering occurred under burial condition. SEM examination of ilmenite grains reveal the presence of solution pit, chemical leaching, corrosion and replacement textures, supporting the intense epigenetic alteration and weathering under subaerial condition and post-depositional changes by water-table condition.  相似文献   

10.
The Loch Ba ring-dyke in the Tertiary igneous central complex of Mull, N.W. Scotland is composed predominantly of a banded rhyolitic welded tuff. The rhyolite contains numerous inclusions of dark aphanitic rock. The textural relationships between the different rocks indicate rapid, violent and intimate mixing during emplacement of the dyke. The dark glassy component varies continuously from basaltic andesite to andesite, dacite and rhyolite. These glasses are enriched in FeO and depleted in MgO at a given SiO2 content in comparison to other tholeiitic highly differentiated volcanic rocks. The rhyolite contains an average of 4% phenocrysts and is associated with the mineral assemblage plagioclase (An32 to An21)-sanidine(Or50–60)-hedenbergite-fayalite-magnetite-ilmenite-apatite-zircon. Mineral aggregates involving either plagioclase-hedenbergite-ilmenite or plagioclase-fayalite-magnetite are common, but aggregates containing fayalite and hedenbergite together are scarce. The dark glassy components are either phenocryst free or contain less than 0.2% phenocrysts. The main phenocrysts associated with the dark glasses are plagioclase (An65-An30), high calcium clinopyroxene ranging continuously from augite to pure hedenbergite, pigeonite, magnetite, ilmenite and rare apatite. Zoning in minerals is generally weak or absent. The plagioclase feldspar, high calcium clinopyroxenes and pigeonites have similar compositional ranges to the minerals observed in the Middle and Upper Zones of the Skaergaard Intrusion. The mineral compositions are systematically related to SiO2 content and Mg number of the glasses. The data demonstrate that mineral compositions and assemblages similar to the Skaergaard form from silica-rich andesitic to rhyolitic liquids. The various mafic glasses are interpreted to have been derived from a zoned magma chamber underlying an upper layer of rhyolitic magma. Differentiation is attributed to fractional crystallization of the observed mineral assemblages causing SiO2 enrichment and FeO depletion. However, glasses with less than 57% SiO2 have unusual compositions with very low MgO and P2O5 as well as variable Al2O3 and TiO2. Their peculiarities could be explained by andesitic magmas assimilating cumulate mineral aggregates precipitated from more differentiated dacite and rhyolite magmas. The bulk compositions of these cumulates have high FeO, low SiO2 and negligible MgO and P2O5. It is suggested that the high density of the mineral aggregates containing fayalite-hedenbergite-magnetite and ilmenite caused them to settle through the zoned chamber to be assimilated by high temperature, less differentiated magmas.  相似文献   

11.
Titaniferous chromite (up to 8 wt% TiO2) and magnesian ilmenite (up to 10 wt% MgO) coexist at the base of the differentiated tholeiitic Mount Ayliff Intrusion in the Karoo Province of southern Africa, suggesting that the original magma was TiO2-rich. Picritic lavas with 3% TiO2 from the Lebombo monocline of the Karoo Province also contain microphenocrysts of magnesian ilmenite (up to 6 wt% mgO) and armalcolite (up to 7 wt% MgO). These oxide mineral associations and compositions are atypical of tholeiitic magmas, in which chromite usually has less than 1 wt% TiO2, ilmenite less than 3 wt% MgO and armalcolite is rarely a primary mineral. Experiments have been conducted at one atmosphere pressure on a range of compositions to determine the effect of TiO2 on the crystallization and composition of chromite, ilmenite and armalcolite. The results indicate that increasing the TiO2 content of picritic magmas increases the TiO2 content of the spinel, mainly at the expense of Al2O3, whereas Cr2O3 is not affected. Spinel compositions in the Mount Ayliff Intrusion (with over 45 wt% Cr2O3, less than 10 wt% Al2O3 and 8 wt% TiO2) were duplicated in experiments on a picrite at temperatures of about 1,200°C at the Ni/NiO buffer. Increasing fO2 from fayalite-magnetite-quartz to Ni/NiO buffer is shown to increase the crystallization temperature of armalcolite and to decrease that of ilmenite. The total FeO content of the liquid has little influence on the crystallization temperature of these phases. The TiO2 content of the liquid, when either ilmenite or armalcolite crystallizes, varies inversely with SiO2 content. The MgO content of the liquid at which ilmenite or armalcolite crystallizes depends upon the TiO2 content of the starting composition, with naturally occurring and experimetally determined saturation being demonstrated for liquids with 5 wt% MgO and 5.5 wt% TiO2. The partition coefficent for MgO between armalcolite or ilmenite and liquid is about 1.5. Observed magnesian armalcolite and ilmenite compositions in picrite lavas (both minerals) and in the Mount Ayliff Intrusion (ilmenite only) are consistent with crystallization from a TiO2-rich magma with approximately 5 wt% MgO. The Fe 2 3+ TiO5 component of armalcolite in the picrite lavas matches those formed experimentally at temperatures of 1,150–1,110°C and fO2 of the Ni/NiO to Ni/NiO+1 log unit. Similarities also exist between the compositions of chromite, ilmenite and armalcolite and liquid fraction-ation trends of some Hawaiian high-TiO2 lavas and the experimental studies presented here.  相似文献   

12.

Five compositional-textural types of ilmenite can be distinguished in nine kimberlites from the Eastern Dharwar craton of southern India. These ilmenite generations record different processes in kimberlite history, from mantle to surface. A first generation of Mg-rich ilmenite (type 1) was produced by metasomatic processes in the mantle before the emplacement of the kimberlite. It is found as xenolithic polycrystalline ilmenite aggregates as well as megacrysts and macrocrysts. All of these ilmenite forms may disaggregate within the kimberlite. Due to the interaction with low-viscosity kimberlitic magma replacement of pre-existing type 1 ilmenite by a succeeding generation of geikielite (type 2) along grain boundaries and cracks occurs. Another generation of Mg-rich ilmenite maybe produced by exsolution processes (type 3 ilmenite). Although the identity of the host mineral is unclear due to extensive alteration and possibility includes enstatite. Type 4 Mn-rich ilmenite is produced before the crystallization of groundmass perovskite and ulvöspinel. It usually mantles ilmenite and other Ti-rich minerals. Type 5 Mn-rich ilmenite is produced after the crystallization of the groundmass minerals and replaces them. The contents of Cr and Nb in type 2, 4 and 5 ilmenites are highly dependent on the composition of the replaced minerals, they may not be a good argument in exploration. The highest Mg contents are recorded in metasomatic ilmenite that is produced during kimberlite emplacement, and cannot be associated with diamond formation. The higher Mn contents are linked to magmatic processes and also late processes clearly produced after the crystallization of the kimberlite groundmass, and therefore ilmenite with high Mn contents cannot be considered as a reliable diamond indicator mineral (DIM) and kimberlite indicator mineral (KIM).

  相似文献   

13.
Study of Ni sorption onto Tio mine waste rock surfaces   总被引:1,自引:0,他引:1  
Sorption phenomena are known to play significant roles in metal mobility in mine drainage waters. The present study focuses on sorption phenomena controlling Ni concentrations in contaminated neutral drainage issued from the waste rock piles of the Tio mine, a hematite–ilmenite deposit near Havre-Saint-Pierre, Québec, Canada exploited by Rio Tinto Iron and Titanium. Batch sorption tests were conducted on waste rock samples of different composition and degree of alteration, as well as on the main mineral phases purified from the waste rocks. Sorbed phases were submitted to sequential extractions, XPS and DRIFT studies for further interpretation of sorption phenomena. The results from the present study confirm that sorption phenomena play a significant role in the Tio mine waste rocks, and that the main sorbent phases are the residual ilmenite ore in waste rocks, as well as plagioclase, the main gangue mineral. Sequential extractions suggest that most sorption sites are associated with reducible fractions, and XPS results indicate that Ni is sorbed as the hydroxide Ni(OH)2. The results from the present study provide useful information on sorption phenomena involved in the Tio mine waste rocks and enable further interpretation of Ni geochemistry in contaminated neutral drainage.  相似文献   

14.
The heavy mineral placer deposits of the coastal sediments in south Maharashtra stretch for 12.5 km from Pirwadi in the north to Talashil in the south. The area is a sand bar represented by a narrow submergent coastal plain lying between the Achara and Gad Rivers. The sediments in the area are mainly sands which are moderately well sorted to well sorted. The heavy mineral concentration in the surficial sediments ranges between 0.69 and 98.32 wt % (28.73 wt % in average). The heavy mineral concentration shows an increasing trend from north to south. The heavy mineral suite consists predominantly of opaque minerals (ilmenite, magnetite and chromite), garnet, pyroxene, amphibole, zircon, tourmaline, rutile, staurolite, etc. Ilmenite grains are fresh whereas magnetite grains show the effect of weathering and alteration. The chromite grains are rounded to sub-rounded with alteration at the margin of the grains. The surficial textures of the opaque minerals show mechanical breaking that indicates limited distance of transportation. Ilmenite has TiO2 in the range between 40.04 and 46.6 wt %. Based on ore microscopy studies, the magnetite grains appear to be of two types: pure magnetite and titano-magnetite. Compositionally, the total magnetite fractions have Fe2O3 between 32 and 46 wt %, FeO between 19.0 and 25 wt % and TiO2 between 14.3 and 23.9 wt %. The chromite grains are an admixture of two varieties, ferro-chromite and magnesio-chromite. The chromite grains have 32.06–47.5 wt % of Cr2O3 with total iron between 23.86 wt % (4.73% Fe2O3 and 19.13% FeO) and 27.89 wt % (4.36% Fe2O3 and 23.53% FeO) and MgO between 12 and 40 wt %. The observed variations in the distribution of heavy minerals in the area are due to differences in the sediment supply, their specific gravity and oceanographic processes all of which result in a selective sorting of the sediments. The observed mineral assemblages of transparent heavy minerals (pyroxene, amphibole, tourmaline, kyanite, garnet, zircon and olivine) are suggestive of their derivation from a heterogeneous provenance comprising of igneous rocks, high grade metamorphic rocks and reworked Kaladgi sediments. The chromite grains appear to have been derived from ultrabasic rocks present in the upper reaches of the Gad River. The inferred reserves of ilmenite, magnetite and chromite are 0.175, 0.395 and 0.032 million tons, respectively.  相似文献   

15.
Abstract. The study based on microscopic and microprobe techniques reveals that ilmenite of Manavalakurichi deposit has generally reached the alteration phase of 'leached ilmenite'. The XRD and bulk chemical analysis confirm the limited alteration undergone by ilmenite grains. Ilmenite alteration has been found to be a process of continuous leaching of iron from the mineral lattice and hydroxylisation. The enrichment of trace elements with progressive alteration is discussed. Si and Al are enriched by more than 100 fold. The prevalence of reducing environment at present in the deposit indicates that the oxidation of ferrous iron leading to pseudorutile formation would have occurred during transportation of sediments.  相似文献   

16.
Summary Titanium placer deposits occur in alluvial-fluvial drainage systems which dissect Moldanubian gneisses intruded by Late Variscan pegmatites (Hagendorf province) in southern Germany. Based upon their texture (zonation, exsolution lamellae, intergrowth), microchemical data (Nb, Cr, Ta, V, Fe, W, Sn) and mineral inclusions, two major grain types of intergrown rutile and ilmenite have been established. Grains of type A are always zoned and consist of rutile cores enveloped by ilmenite containing small inclusions of wolframite. A core-rim transition zone is characterized by complex relations of rutile and ilmenite, with rutile lamellae being rich in Nb, V and Fe. Types B1 and B2 aggregates consist of ilmenite with lamellae of niobian rutile and/or ilmenorutile, and additionally have inclusions of ferrocolumbite, pyrochlore, betafite, sphalerite, pyrrhotite and Fe oxides. Such grain types featuring an intimate intergrowth of rutile and ilmenite were called nigrine. Type-C grains are quite similar in their morphological appearance but consist of W-enriched rutile devoid of mineral inclusions and reaction products. Pseudorutile and leucoxene replacing minerals of the nigrine aggregates are presumably caused by supergene alteration under fluctuating redox conditions. Phosphate and aluminum remobilized by supergene processes led to the formation of hydrous Ti-rich phases containing Al, P and Fe. High Nb and W concentrations in nigrine aggregates and in rutile type C may be taken as a marker for highly differentiated granites or pegmatites. This has implications for both, heavy-mineral-based provenance analysis and stream sediment exploration.  相似文献   

17.
Manganoan ilmenite was identified in Juina, Brazil kimberlitic rocks among other megacrysts. It forms oval, elongated, rimless grains comprising 8–30 wt.% of the heavy fraction. Internally the grains are homogeneous. The chemical composition of Mn-ilmenite is almost stoichiometric for ilmenite except for an unusually high manganese content, with MnO = 0.63–2.49 wt.% (up to 11 wt.% in inclusions in diamond) and an elevated vanadium admixture (V2O3 = 0.21–0.43 wt.%). By the composition, Mn-ilmenite megacrysts and inclusions in diamond are almost identical. The concentrations of trace elements in Mn-ilmenite, compared to picroilmenite, are much greater and their variations are very wide. Chondrite-normalized distribution of trace elements in Mn-ilmenite megacrysts is similar to the distribution in Mn-ilmenites included in diamond. This confirms that Mn-ilmenite in kimberlites is genetically related to diamond. The finds of Mn-ilmenite known before in kimberlitic and related rocks are late- or postmagmatic, metasomatic phases. They either form reaction rims on grains of picroilmenite or other ore minerals, or compose laths in groundmass. In contrast to those finds, Mn-ilmenite megacrysts in Juina kimberlites are a primary mineral phase with a homogeneous internal structure obtained under stable conditions of growth within lower mantle and/or transition zone. In addition to pyrope garnet, chromian spinel, picroilmenite, chrome-diopside, and magnesian olivine, manganoan ilmenite may be considered as another kimberlite/diamond indicator mineral.  相似文献   

18.
The activity of TiO2 can be precisely defined as a function of pressure, temperature and activities of other components for common mineral assemblages in metapelites (ilmenite-quartz-garnet-plagioclase-Al2SiO5) and in metabasites (plagioclase-sphene-ilmenite-quartzgarnet). These mineral assemblages can be modelled by the equilibria: 1) 3ilmenite+Al2SiO5+2quartz=almandine+3TiO2 2) anorthite + 2sphene = grossular + 2TiO2 + quartz 3) 3anorthite+3quartz+6ilmenite = grossular+ 6TiO2+2almandine. These mineral assemblages can be used at (rutile saturation) and a given T to get maximum pressure limits of some metapelites and metabasites. When electron microprobe analyses of mineral grains adjacent to Ti-bearing phases are made, these data give maximum pressure estimates in reasonable agreement with other geobarometers. The activity of TiO2 in many metapelites is very near rutile saturation, but for metabasites the activity of TiO2 in some sillimanite zone rocks is as low as 0.6. The solubility of TiO2 in biotite, hornblende and garnet is a complex function of T, P, the activities of components in coexisting minerals and crystal chemical constraints in these minerals. At a given P and T the solubility of TiO2 in biotite and hornblende does not appear to be strongly dependent upon for sphene and ilmenite versus rutile-bearing assemblages.  相似文献   

19.
Garnet peridotites occur in quartzofeldspathic gneisses in the Northern Qaidam Mountains, western China. They are rich in Mg and Cr, with mineral compositions similar to those in mantle peridotites found in other orogenic belts and as xenoliths in kimberlite. Garnet‐bearing lherzolites interlayered with dunite display oriented ilmenite and chromite lamellae in olivine and pyroxene lamellae in garnet that have been interpreted to indicate pressures in excess of 6 GPa. However, some garnet porphyroblasts include hornblende, chlorite and spinel + orthopyroxene symplectite after garnet; some clinopyroxene porphyroblasts include abundant actinolite/edenite, calcite and lizardite in the lherzolite; some olivine porphyroblasts (Fo92) include an earlier generation Mg‐rich olivine (Fo95–99), F‐rich clinohumite, pyroxene, chromite, anthophyllite/cummingtonite, Cl‐rich lizardite, carbonates and a new type of brittle mica, here termed ‘Ca‐phlogopite’, in the associated dunite. The pyrope content of garnet increases from core to rim, reaching the pyrope content (72 mol.%) of garnet typically found in the xenoliths in kimberlite. The simplest interpretation of these observations is that the rock association was formerly mantle peridotite emplaced into the oceanic crust that was subjected to serpentinization by seawater‐derived fluids near the sea floor. Dehydration during subduction to 3.0–3.5 GPa and 700 °C transformed these serpentinites into garnet lherzolite and dunite, depending on their Al and Ca contents. Pseudosection modelling using thermocalc shows that dehydration of the serpentinites is progressive, and involved three stages for Al‐rich and two stages for Al‐poor serpentinites, corresponding to the breakdown of the key hydrous minerals. Static burial and exhumation make olivine a pressure vessel for the pre‐subduction mineral inclusions during ultrahigh‐pressure (UHP) metamorphism. The time span of the UHP event is constrained by the clear interface between the two generations of olivine to be very short, implying rapid subduction and exhumation.  相似文献   

20.
Macrocrysts of corundum, ilmenite, and spinel-group minerals from alluvial deposits of the Eger Rift were studied for composition, texture, and mineral inclusions. All macrocrysts show usually magmatic corrosion textures indicating disequilibrium with the transporting alkali-basalt magma. Corundum grains, exclusively sapphires, were classified by trace-element signatures as magmatic and metamorphic types. Some sapphire grains show erratic compositions that may have resulted from a metasomatic overprint. The inclusion inventory of magmatic corundum suggests crystallization from a differentiated alkaline silicate melt. Corundum itself was never observed as an inclusion mineral. Magnesium- and Fe3+-rich ilmenite, described as typical mantle-derived species, is the dominant heavy mineral in almost all alluvial deposits of the Eger Rift. Most discrete macrocrysts are similar in appearance and composition to kimberlite- and basanite-related ilmenite. Ilmenite included in alluvial corundum and zircon grains differ from the bulk of discrete ilmenite grains by larger concentrations of Nb and Mn. The mantle origin of the Mg–Fe3+-rich ilmenite is confirmed by compositional and thermo-barometric comparison with ilmenite from clinoproxenitic and hornblenditic xenoliths, which probably originated in the Moho region. The Fe–Ti two-oxide geothermometry and oxygen-barometry of coexisting ilmenite–magnetite pairs yield equilibrium temperatures between 900 and 1,080 °C and oxygen fugacities log10fO2 between ?0.1 and 1.1 (relative to the NNO buffer), which indicate that the upper mantle as well as the mantle/crust transition zone below the rift is at least partially oxidized. The ilmenite macrocrysts were transported from the source region to the surface by explosive alkali-basalt magmas, as implied by the presence of basaltic-pipe breccias in close vicinity to some placer deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号