首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employing Eggleton’s stellar evolution code with the optically thick wind assumption, we have systematically studied the WD + He star channel of Type Ia supernovae (SNe Ia), in which a carbon–oxygen WD accretes material from a He main-sequence star or a He subgiant to increase its mass to the Chandrasekhar mass. We mapped out the parameter spaces for producing SNe Ia. According to a detailed binary population synthesis approach, we find that the Galactic SN Ia birthrate from this channel is ~0.3×10?3 yr?1, and that this channel can produce SNe Ia with short delay times (~45–140 Myr). We also find that the surviving companion stars in this channel have a high spatial velocity (>400 km/s) after the SN explosion, which could be an alternative origin for hypervelocity stars (HVSs), especially for HVSs such as US 708.  相似文献   

2.
We present new spectroscopic and photometric data of the Type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal Type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf–Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf–Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a Type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous Type Ia event with some resemblance to SN 1991bg.  相似文献   

3.
The early-stage structure and evolution of a supernova remnant (SNR) depends largely on its ambient interstellar medium, so the interstellar medium becomes the valid probe for investigating the evolution of SNRs. We have observed the 12CO (J = 1 − 0) line emission around the remnant of SN 1572 with the 13.7m millimeter-wave telescope at the Qinghai Station of PMO, in order to investigate the distribution of the CO molecular gas around SN 1572 and provide some observational basis for studying the relationship of SN 1572 with its ambient molecular gas and the evolution of this SNR. The observed result indicates that the molecular gas in the velocity range of VLSR = −69∼ −58 km/s is associated with SN 1572, and this velocity component comes from a large-scale molecular cloud. The molecular gas is distributed along the periphery of the radio shell, continually but not uniformly, and forms a semi-closed molecular shell around the SNR. The enhanced emission exists in its whole eastern half, especially the CO emission is strongest on the northeastern edge. At the emission peak position, the spectral line exhibits a broadened velocity feature (>5 km/s). Combining with available observations in the optical, infrared, X-ray and other wavebands, it is demonstrated that the fast shock wave and ejecta are expanding into the molecular gas on the northeastern edge, and interacting with the dense gas. This interaction will have an important influence on the future evolution of SN 1572.  相似文献   

4.
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.  相似文献   

5.
We show that the dearth of brown dwarfs in short-period orbits around Solar-mass stars – the brown dwarf desert – can be understood as a consequence of inward migration within an evolving protoplanetary disc. Brown dwarf secondaries forming at the same time as the primary star have masses which are comparable to the initial mass of the protoplanetary disc. Subsequent disc evolution leads to inward migration, and destruction of the brown dwarf, via merger with the star. This is in contrast with massive planets, which avoid this fate by forming at a later epoch when the disc is close to being dispersed. Within this model, a brown dwarf desert arises because the mass at the hydrogen-burning limit is coincidentally comparable to the initial disc mass for a Solar mass star. Brown dwarfs should be found in close binaries around very low mass stars, around other brown dwarfs, and around Solar-type stars during the earliest phases of star formation.  相似文献   

6.
A model of the Vela supernova remnant (SNR) based on a cavity explosion of a supernova (SN) star is proposed. It is suggested that the general structure of the remnant is determined by the interaction of the SN blast wave with a massive shell created by the SN progenitor (15-20 M) star. A possible origin of the nebula of hard X-ray emission detected around the Velapulsar is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
It is expected that an average protostar will undergo at least one impulsive interaction with a neighbouring protostar whilst a large fraction of its mass is still in a massive, extended disc. Such interactions must have a significant impact upon the evolution of the protostars and their discs.   We have carried out a series of simulations of coplanar encounters between two stars, each possessing a massive circumstellar disc, using an SPH code that models gravitational, hydrodynamic and viscous forces. We find that during a coplanar encounter, disc material is swept up into a shock layer between the two interacting stars, and the layer then fragments to produce new protostellar condensations. The truncated remains of the discs may subsequently fragment; and the outer regions of the discs may be thrown off to form circumbinary disc-like structures around the stars. Thus coplanar disc–disc encounters lead efficiently to the formation of multiple star systems and small- N clusters, including substellar objects.  相似文献   

8.
In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by Dönmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a “star”, modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the X-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.  相似文献   

9.
We report multi-wavelength observations towards IRAS 16547–4247, a luminous infrared source with a bolometric luminosity of 6.2 × 104 L . Dust continuum observations at 1.2-mm indicate that this object is associated with a dust cloud with a size of about 0.4 pc in diameter and a mass of about 1.3 × 103 M . Radio continuum observations show the presence of a triple radio source consisting of a compact central object and two outer lobes, separated by about 0.3 pc, symmetrically located from the central source. Molecular hydrogen line observations show a chain of knots that trace a collimated flow extending over 1.5 pc. We suggest that IRAS 16547–4247 corresponds to a dense massive core which hosts near its central region a high-mass star in an early stage of evolution. This massive YSO is undergoing the ejection of a collimated stellar wind which drives the H2 flow. The radio emission from the lobes arises in shocks resulting from the interaction of the collimated wind with the surrounding medium. We conclude that the thermal jets found in the formation of low-mass stars are also produced in high-mass stars.  相似文献   

10.
One of interactions of young active stars with interstellar gas is excitation of shock waves, that compress the gas and favour the formation of new generation of stars. Thus, a positive feedback between stellar and gaseous constituents is realized. When spread from point to point this interaction gives rise to a stationary wave of star formation. The properties of such a wave are analyzed both in homogeneous and clumped media.The stationary wave of star formation is a natural mechanism that can provide a coherent behaviour (such as global star bursts) of large star-gas systems. Particularly, the origin of extreme and intermediate halo populations in our Galaxy are possibly produced by large-scale star burst, that was initiated by stationary wave of formation of Population III stars.  相似文献   

11.
We consider the effect of a supernova (SN) explosion in a very massive binary that is expected to form in a portion of Population III stars with the mass higher than  100 M  . In a Population III binary system, a more massive star can result in the formation of a black hole (BH) and a surrounding accretion disc. Such BH accretion could be a significant source of the cosmic reionization in the early Universe. However, a less massive companion star evolves belatedly and eventually undergoes a SN explosion, so that the accretion disc around a BH might be blown off in a lifetime of companion star. In this paper, we explore the dynamical impact of a SN explosion on an accretion disc around a massive BH, and elucidate whether the BH accretion disc is totally demolished or not. For the purpose, we perform three-dimensional hydrodynamic simulations of a very massive binary system, where we assume a BH of  103 M  that results from a direct collapse of a very massive star and a companion star of  100 M  that undergoes a SN explosion. We calculate the remaining mass of a BH accretion disc as a function of time. As a result, it is found that a significant portion of gas disc can survive through three-dimensional geometrical effects even after the SN explosion of a companion star. Even if the SN explosion energy is higher by two orders of magnitude than the binding energy of gas disc, about a half of disc can be left over. The results imply that the Population III BH accretion disc can be a long-lived luminous source, and therefore could be an important ionizing source in the early Universe.  相似文献   

12.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

13.
A revision of Stodółkiewicz's Monte Carlo code is used to simulate the evolution of million-body star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The evolution of N -body systems influenced by the tidal field of a parent galaxy and by stellar evolution is presented. All models consist of 1 000 000 stars. The process of energy generation is realized by means of appropriately modified versions of Spitzer's and Mikkola's formulae for the interaction cross-section between binaries and field stars and binaries themselves. The results presented are in good agreement with theoretical expectations and the results of other methods. During the evolution, the initial mass function (IMF) changes significantly. The local mass function around the half-mass radius closely resembles the actual global mass function. At the late stages of evolution, the mass of the evolved stars inside the core can be as high as 97 per cent of the total mass in this region. For the whole system, the evolved stars can compose up to 75 per cent of the total mass. The evolution of cluster anisotropy strongly depends on initial cluster concentration, IMF and the strength of the tidal field. The results presented are the first step in the direction of simulating the evolution of real globular clusters by means of the Monte Carlo method.  相似文献   

14.
We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes t = 4.57 × 109 yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than P orb ≈ 2.8 days. Planets of one Jupiter mass with an orbital period P orb ≈ 2 days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.  相似文献   

15.
We consider the evolution of a neutron star binary system under the effect of two factors: gravitational radiation and mass transfer between the components. Gravitational radiation is specified under the justified assumption of a circular orbit and point masses and in the approximation of a weak gravitational field at nonrelativistic velocities of the binary components. During the first evolutionary phase determined only by gravitational radiation, the neutron stars approach each other according to a simple analytical solution. The second evolutionary phase begins at the time of Roche-lobe filling by the low-mass component, when the second factor, mass transfer as a result of mass loss by the latter, also begins to affect the evolution. Under the simplest assumptions of conservative mass transfer and exact equality between the Roche-lobe radius and the radius of the low-mass neutron star, it is still possible to extend the analytical solution of the problem of evolution to its second phase. We present this complete solution at both phases and, in particular, give theoretical light curves of gravitational radiation that depend only on two dimensionless parameters (m t and δ 0). Based on the solution found, we analyze the theoretical gravitational signals from SN 1987A; this analysis includes the hypothesis about the rotational explosion mechanism for collapsing supernovae.  相似文献   

16.
Intense mass loss occurs for low- and intermediate-mass stars on the asymptotic giant branch (AGB), and for the higher mass (≳8 M) stars during their red supergiant evolution. These winds affect the evolution of the stars profoundly, creates circumstellar envelopes of gas and dust, as well as enrich the interstellar medium with heavy elements and grain particles. The mass loss characteristics are well-studied, but the basic processes are still not understood in detail, and the mass-loss rate of an individual star cannot be derived from first principles. These objects also provide us with fascinating systems, in which intricate interplays between various physical and chemical processes take place, and their relative simplicity in terms of geometry, density distribution, and kinematics makes them excellent astrophysical laboratories. The review concentrates on the aspects of AGB stars and their mass loss which are of particular interest in connection with ALMA.  相似文献   

17.
大质量恒星由于其高光度、短寿命和质量损失 ,对星系的积分光谱能量分布和重元素增丰起主导作用 ,从而在研究星系的形成和演化上具有特殊的意义。特别是随着天文设备的长足进展 ,我们可以回溯宇宙演化的历史 ,得到形成初期时星系的观测性质。那时 ,大质量恒星主导星系的辐射性质 ,这更加突出了对大质量恒星进一步了解的迫切性。但是大质量恒星的演化性质相对中小质量恒星而言 ,有很多不确定性。本文通过对比现有恒星模型与实测结果 ,对现有大质量恒星演化理论中存在的几个与对流和质量损失相关的问题进行了评述 ,并对从理论上 ,特别是通过数字模拟方法对这些问题进行诊断提出了展望。  相似文献   

18.
We further investigate the two-dimensional hydrodynamic explosion model for rapidly rotating and collapsing supernovae (Aksenov et al. 1997), in which the initial energy release inside a fragmenting low-mass neutron star of critical mass ≈0.1M moving in a circular orbit at a velocity of ≈18000 km s?1 is reduced considerably. This velocity closely corresponds to a pulsar escape velocity of ≈1000 km s?1 (at a total mass of ≈1.9M for the binary of neutron stars). Compared to our previous study (Zabrodina and Imshennik 1999), this energy release was reduced by more than a half. Otherwise, the model in question does not differ from the explosion model with a self-consistent chemical composition of nuclides investigated in the above paper. In particular, the initial energy release was carefully reconciled with a chemical composition. Our numerical solution shows that the reduction in energy release due to the time scales of β processes and neutrino energy losses being finite does not alter the qualitative results of our previous studies (Aksenov et al. 1997; Imshennik and Zabrodina 1999). An intense undamped diverging shock wave (with a total post-shock energy ? 1051 erg at a front radius of ≈10 000 km) is formed; a large asymmetry of explosion with a narrow cone (with a solid angle of ≈π/4) around the leading direction, which coincides with the velocity direction of the low-mass neutron star at the instant of its explosive fragmentation in the two-dimensional model, emerges. A jet of synthesized radioactive nickel, whose mass is estimated by using simple threshold criteria to be M Ni≈(0.02?0.03)M is concentrated inside this cone. This appears to be the integrated parameter that is most sensitive to the specified reduction in initial energy release; it is also reduced by almost a half compared to our previous estimate (Imshennik and Zabrodina 1999). The time of propagation of the shock wave inferred in our model to the presupernova surface was estimated for SN 1987A to be 0.5–1.0 h, in agreement with observations.  相似文献   

19.
We propose a model for the bolometric light curve of a type-Ia supernova (SN Ia) that explodes in a dense circumstellar (CS) envelope. Our modeling of the light curves for SN 2002ic and SN 1997cy shows that the densities of the CS envelopes around both supernovae at a radius of ~7×1015 cm are similar, while the characteristic ejection time for this envelope around SN 1997cy does not exceed 600 yr. We analyze two possible evolutionary scenarios that could lead to the explosion of a SN Ia inside a dense C S hydrogen envelope: accretion onto a CO white dwarf in a symbiotic binary and the evolution of a single star with an initial mass of about 8M. If the hypothesis of a SN Ia explosion in a dense CS envelope is correct for SN 2002ic and SN 1997cy, then we must assume that the the rapid loss of the red-supergiant envelope in several hundred years and the subsequent explosion of the CO white dwarf are synchronized by some physical mechanism. This mechanism may be related to the contraction of the white dwarf as it approaches the Chandrasekhar limit. We show that the formation of a (super-)Chandrasekhar mass due to the merger of a CO white dwarf and the CO core of a red supergiant followed by a supernovae explosion is unlikely, since this mechanism does not provide the required synchronization of the rapid mass loss and the explosion.  相似文献   

20.
We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around 107 K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the protodisc material and may assist in the formation of a quasi-steady disc. Thus, the centrifugal breakout found in numerical simulations for uniformly rotating stars does not imply that quasi-steady discs with slow outflow cannot form around magnetic rotator stars with solar-type differential rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号