首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Climate Policy》2013,13(3):247-260
In order to stabilize long-term greenhouse gas concentrations at 450 ppm CO2-eq or lower, developed countries as a group should reduce emissions by 25–40% below 1990 levels by 2020, while developing countries' emissions need to be reduced by around 15–30%, relative to their baseline levels, according to the IPCC and our earlier work. This study examines 19 other studies on the emission reductions attributed to the developed and developing countries for meeting a 450 ppm target. These studies considered different allocation approaches, according to equity principles. The effect of the assumed global emissions cap in these studies is analysed. For developed countries, the original reduction range of 25–40% by 2020 is still within the average range of all studies, but does not cover it completely. Comparing the studies shows that assuming a global emissions cap of 5–15% above 1990 levels by 2020 generally leads to more stringent reduction targets than when a global emissions cap of 20–30% above 1990 levels is assumed. For developing countries, the reduction range of 15–30% below their baseline levels by 2020 corresponds to an increase on the 1990 level from 70% (about the 2006 level) to 120%. Reducing deforestation emissions by 50% below baseline levels by 2020 may relax the emission reductions for either group of countries; for developing countries by about 7% or for developed countries by about 15% (but not for both).  相似文献   

2.
To clarify the link between existing infrastructure legacy and the 2°C target, we extend the work of Davis et al. (Science 329:1330–1333, 2010) by introducing non-CO2 greenhouse gases and the inertia in transportation-needs drivers. We conclude that climate policies able to maintain climate change below 2°C cannot disregard existing infrastructure.  相似文献   

3.
4.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

5.
6.
This article shows the potential impact on global GHG emissions in 2030, if all countries were to implement sectoral climate policies similar to successful examples already implemented elsewhere. This assessment was represented in the IMAGE and GLOBIOM/G4M models by replicating the impact of successful national policies at the sector level in all world regions. The first step was to select successful policies in nine policy areas. In the second step, the impact on the energy and land-use systems or GHG emissions was identified and translated into model parameters, assuming that it would be possible to translate the impacts of the policies to other countries. As a result, projected annual GHG emission levels would be about 50 GtCO2e by 2030 (2% above 2010 levels), compared to the 60 GtCO2e in the ‘current policies’ scenario. Most reductions are achieved in the electricity sector through expanding renewable energy, followed by the reduction of fluorinated gases, reducing venting and flaring in oil and gas production, and improving industry efficiency. Materializing the calculated mitigation potential might not be as straightforward given different country priorities, policy preferences and circumstances.

Key policy insights

  • Considerable emissions reductions globally would be possible, if a selection of successful policies were replicated and implemented in all countries worldwide.

  • This would significantly reduce, but not close, the emissions gap with a 2°C pathway.

  • From the selection of successful policies evaluated in this study, those implemented in the sector ‘electricity supply’ have the highest impact on global emissions compared to the ‘current policies’ scenario.

  • Replicating the impact of these policies worldwide could lead to emission and energy trends in the renewable electricity, passenger transport, industry (including fluorinated gases) and buildings sector, that are close to those in a 2°C scenario.

  • Using successful policies and translating these to policy impact per sector is a more reality-based alternative to most mitigation pathways, which need to make theoretical assumptions on policy cost-effectiveness.

  相似文献   

7.
8.
Countries with emission levels below their emission allowances have surplus Assigned Amount Units (AAUs) or other emission credits. Under the Kyoto Protocol, these surplus credits may effectively be carried from the first to a following commitment period. In the climate negotiations, various rules for carry-over and sale of surplus allowances have been put forward. This paper analyses the effect of these options on the reduction pledges for 2020, taking into account the estimated credits from the Clean Development Mechanism, Joint Implementation projects, and land-use activities for the first commitment period. For current Kyoto Protocol rules of unlimited carry-over of surplus allowances and limited carry-over of other credits, the environmental effectiveness of reduction pledges could be seriously undermined. For the group of countries that showed a willingness to participate in a second commitment period, it could imply that instead of an aggregated 2020 target resulting from the pledges of 18 to 28?% below 1990 levels by 2020, their emissions could return to business-us-usual emission projections. For the EU, a 30?% target by 2020 could imply higher emissions compared to a 20?% target, if surplus allowances would be used for achieving the 30?% but not for the 20?% target. Restricting the use of Kyoto surplus units to domestic use only, would limit the problem, but still seriously undermine the effectiveness of 2020 reduction targets.  相似文献   

9.
Passenger vehicles and power plants are major sources of GHG emissions. While economic analyses generally indicate that a broader market-based approach to GHG reduction would be less costly and more effective, regulatory approaches have found greater political success. We evaluate a global regulatory regime that replaces coal with natural gas in the electricity sector and imposes technically achievable improvements in the efficiency of personal transport vehicles. Its performance and cost are compared with other scenarios of future policy development including a no-policy world, achievements under the Copenhagen Accord, and a price-based policy to reduce global emissions by 50% by 2050. The assumed regulations applied globally achieve a global emissions reduction larger than projected for the Copenhagen agreements, but they do not prevent global GHG emissions from continuing to grow. The reduction in emissions is achieved at a high cost compared to a price-based policy. Diagnosis of the reasons for the limited yet high-cost performance reveals influences including the partial coverage of emitting sectors, small or no influence on the demand for emissions-intensive products, leakage when a reduction in fossil use in the covered sectors lowers the price to others, and the partial coverage of GHGs. If these regulatory measures are in part correcting other barriers or behavioural limitations consumers face, the benefits of overcoming these could offset at least some of the costs we estimate. The extent of any efficiency gap – the difference between engineering estimates of best practice and what actually happens – is highly contested, and offers an important avenue for future research.

Policy relevance

While analysts concerned with national cost of GHG control have long advocated a GHG pricing policy, by a cap-and-trade system or a tax, covering all emissions sources and gases, governments more often pursue sectoral policies and technology standards. Given these political realities, the regulations represent a more politically practical approach to GHG reductions, focusing on solutions that are within reach and that do not depend on technological breakthroughs. If regulations are imposed as a way to get started on larger emissions reductions, and then combined with a broader GHG pricing policy pursuing a deep global cut in emissions, its requirements will eventually be overtaken by the pricing policy. The remaining higher costs of the regulatory targets become diluted so that in later years the difference in average cost per ton between a least-cost approach and one preceded by a period of regulatory action becomes very small.  相似文献   

10.
Current international efforts to reduce greenhouse gas emissions and limit human-induced global-mean near-surface temperature increases to 2°C, relative to the pre-industrial era, are intended to avoid possibly significant and dangerous impacts to physical, biological, and socio-economic systems. However, it is unknown how these various systems will respond to such a temperature increase because their relevant spatial scales are much different than those represented by numerical global climate models—the standard tool for climate change studies. This deficiency can be addressed by using higher-resolution regional climate models, but at great computational expense. The research presented here seeks to determine how a 2°C global-mean temperature increase might change the frequency of seasonal temperature extremes, both in the United States and around the globe, without necessarily resorting to these computationally-intensive model experiments. Results indicate that in many locations the regional temperature increases that accompany a 2°C increase in global mean temperatures are significantly larger than the interannual-to-decadal variations in seasonal-mean temperatures; in these locations a 2°C global mean temperature increase results in seasonal-mean temperatures that consistently exceed the most extreme values experienced during the second half of the 20th Century. Further, results indicate that many tropical regions, despite having relatively modest overall temperature increases, will have the most substantial increase in number of hot extremes. These results highlight that extremes very well could become the norm, even given the 2°C temperature increase target.  相似文献   

11.
As "the third pole", the Tibetan Plateau (TP) is sensitive to climate forcing and has experienced rapid warming in recent decades. This study analyzes annual and seasonal near-surface air temperature changes on the TP in response to transient and stabilized 2.0°C/1.5°C global warming targets based on simulations of the Community Earth System Model (CESM). Elevation-dependent warming (EDW) with faster warming at higher elevations is predicted. A surface energy budget analysis is adopted to uncover the mechanisms responsible for the temperature changes. Our results indicate a clear amplified warming on the TP with positive EDW in 2.0°C/1.5°C warmer futures, especially in the cold season. Mean TP warming relative to the reference period (1961–90) is dominated by an enhanced downward longwave radiation flux, while the variations in surface albedo shape the detailed pattern of EDW. For the same global warming level, the temperature changes under transient scenarios are ~0.2°C higher than those under stabilized scenarios, and the characteristics of EDW are broadly similar for both scenarios. These differences can be primarily attributed to the combined effects of differential downward longwave radiation, cloud radiative forcing, and surface sensible and latent heat fluxes. These findings contribute to a more detailed understanding of regional climate on the TP in response to the long-term climate goals of the Paris Agreement and highlight the differences between transient and stabilized warming scenarios.  相似文献   

12.
Limiting climate change to 2 °C with a high probability requires reducing cumulative emissions to about 1600 GtCO2 over the 2000–2100 period. This requires unprecedented rates of decarbonization even in the short-run. The availability of the option of net negative emissions, such as bio-energy with carbon capture and storage (BECCS) or reforestation/afforestation, allows to delay some of these emission reductions. In the paper, we assess the demand and potential for negative emissions in particular from BECCS. Both stylized calculations and model runs show that without the possibility of negative emissions, pathways meeting the 2 °C target with high probability need almost immediate emission reductions or simply become infeasible. The potential for negative emissions is uncertain. We show that negative emissions from BECCS are probably limited to around 0 to 10 GtCO2/year in 2050 and 0 to 20 GtCO2/year in 2100. Estimates on the potential of afforestation options are in the order of 0–4 GtCO2/year. Given the importance and the uncertainty concerning BECCS, we stress the importance of near-term assessments of its availability as today’s decisions has important consequences for climate change mitigation in the long run.  相似文献   

13.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   

14.
The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860-1899 in the "historical" experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030-2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming.  相似文献   

15.
Climate sensitivity is an important index that measures the relationship between the increase in greenhouse gases and the magnitude of global warming. Uncertainties in climate change projection and climate modeling are mostly related to the climate sensitivity. The climate sensitivities of coupled climate models determine the magnitudes of the projected global warming. In this paper, the authors thoroughly review the literature on climate sensitivity, and discuss issues related to climate feedback processes and the methods used in estimating the equilibrium climate sensitivity and transient climate response (TCR), including the TCR to cumulative CO2 emissions. After presenting a summary of the sources that affect the uncertainty of climate sensitivity, the impact of climate sensitivity on climate change projection is discussed by addressing the uncertainties in 2°C warming. Challenges that call for further investigation in the research community, in particular the Chinese community, are discussed.  相似文献   

16.
Wilhelm May 《Climatic change》2012,110(3-4):619-644
In this study, the strength of the regional changes in near-surface climate associated with a global warming of 2°C with respect to pre-industrial times is assessed, distinguishing between 26 different regions. Also, the strength of these regional climate changes is compared to the strength of the respective changes associated with a markedly stronger global warming of 4.5°C. The magnitude of the regional changes in climate is estimated by means of a normalized regional climate change index, which considers changes in the mean as well as changes in the interannual variability of both near-surface temperature and precipitation. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (1860–2200), the greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. In the other set of simulations (2020–2200), the greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming does not exceed 2°C with respect to pre-industrial times. The study reveals the strongest changes in near-surface climate in the same regions for both scenarios, i.e., the Sahara, Northern Australia, Southern Australia and Amazonia. The regions with the weakest changes in near-surface climate, on the other hand, vary somewhat between the two scenarios except for Western North America and Southern South America, where both scenarios show rather weak changes. The comparison between the magnitude of the regional changes in near-surface climate for the two scenarios reveals relatively strong changes in the 2°C-stabilization scenario at high northern latitudes, i.e., Northeastern Europe, Alaska and Greenland, and in Amazonia. Relatively weak regional climate changes in this scenario, on the other hand, are found for Eastern Asia, Central America, Central South America and Southern South America. The ratios between the regional changes in the near-surface climate for the two scenarios vary considerably between different regions. This illustrates a limitation of obtaining regional changes in near-surface climate associated with a particular scenario by means of scaling the regional changes obtained from a widely used “standard” scenario with the ratio of the changes in the global mean temperature projected by these two scenarios.  相似文献   

17.
This paper analyses factors that contributed to the evolution of SO2, NOx and CO2 emissions in Europe from 1960 to 2010. Historical energy balances, along with population and economic growth data, are used to quantify the impacts of major determinants of changing emission levels, including energy intensity, conversion efficiency, fuel mix, and pollution control. Time series of emission levels are compared for countries in Western and Eastern Europe, throwing light on differences in the importance of particular emission-driving forces. Three quarters of the decline in SO2 emissions in Western Europe resulted from a combination of reduced energy intensity and improved fuel mix, while dedicated end-of-pipe abatement measures played a dominant role in the reduction of NOx emissions. The increase in atmospheric emissions in Eastern Europe through the mid-1990s was associated with the growth of energy-intensive industries, which off-setted the positive impact of better fuel quality and changes in fuel mix. A continuous decrease in energy intensity and higher conversion efficiencies have been the main factors responsible for the moderate rate of growth of European CO2 emissions.  相似文献   

18.
We have compiled historical greenhouse gas emissions and their uncertainties on country and sector level and assessed their contribution to cumulative emissions and to global average temperature increase in the past and for a the future emission scenario. We find that uncertainty in historical contribution estimates differs between countries due to different shares of greenhouse gases and time development of emissions. Although historical emissions in the distant past are very uncertain, their influence on countries?? or sectors?? contributions to temperature increase is relatively small in most cases, because these results are dominated by recent (high) emissions. For relative contributions to cumulative emissions and temperature rise, the uncertainty introduced by unknown historical emissions is larger than the uncertainty introduced by the use of different climate models. The choice of different parameters in the calculation of relative contributions is most relevant for countries that are different from the world average in greenhouse gas mix and timing of emissions. The choice of the indicator (cumulative GWP weighted emissions or temperature increase) is very important for a few countries (altering contributions up to a factor of 2) and could be considered small for most countries (in the order of 10%). The choice of the year, from which to start accounting for emissions (e.g. 1750 or 1990), is important for many countries, up to a factor of 2.2 and on average of around 1.3. Including or excluding land-use change and forestry or non-CO2 gases changes relative contributions dramatically for a third of the countries (by a factor of 5 to a factor of 90). Industrialised countries started to increase CO2 emissions from energy use much earlier. Developing countries?? emissions from land-use change and forestry as well as of CH4 and N2O were substantial before their emissions from energy use.  相似文献   

19.
Using a filter radiometer, the meridional profile of the NO2 photolysis frequency, J(NO2), was measured between 50° N and 30° S during the cruise ANTVII/1 September/October 1988 of the research vessel Polarstern on the Atlantic Ocean. Simultaneously, global broadband irradiance and acrosol were monitored. Clean marine background air with low aerosol loads (b sp=(1–2)×10-5 m-1) was encountered at the latitudes 25° N–30° N and 18° S–27° S, respectively. Under these conditions and an almost cloudless sky J(NO2) reached 7.3×10-3 s-1 (2 sr) for a zenith angle of 30°. Between 30° N and 30° S, the latitudinal variation of the J(NO2) noontime maxima was less than ± 10%, while the mean value at noon was 7.8×10-3 s-1. For the set of all data between 50° N and 30° S, a nearly linear correlation of J(NO2) vs. global broadland irradiance was found. The slope of (8.24±0.03)×10-5 s-1/mW cm-2 agrees within 10% with observations in Jülich (51° N, 6.2° E).  相似文献   

20.
In urban areas traffic is the major contributor to atmospheric particulate matter and exposure to these particles currently represents a serious risk to human health. The attention has been recently focused more on the particles of smaller sizes (PM2.5) which penetrate deeper in respiratory system causing severe health effects. Therefore, more information on PM2.5 should be provided, namely concerning morphological and chemical characterization. Aiming further evaluation of the impact of traffic emissions on public health, this work evaluated the influence of traffic on the chemical and morphological characteristics of PM10 and PM2.5, collected at one site influenced by traffic emissions and at one reference site. Chemical and morphological characteristics of 1,000 individual particles were determined by scanning electron microscopy combined with energy dispersive spectrometer (SEM–EDS). Cluster analysis (CA) was used to identify different types of particles that occurred in PM, aiming the identification of the respective emission sources. Traffic PM2.5 were dominated by particles composed of Fe oxides and alloys (67%) which were related to traffic emissions (this percentage was 3.7 times higher than at the background site); in PM2.5–10 the abundance of Fe oxides and alloys were 20% and 0% for the traffic and background sites, respectively. Background PM2.5 were mainly constituted by aluminum silicates (63%) related to natural sources (this percentage was 2.5 times higher than at the traffic site); the abundances of aluminum silicates in PM2.5–10 were 74% and 73% for traffic and background sites, respectively. It was concluded that traffic emissions were mainly present in PM2.5 (the percentage of particles associated to these emissions was 3.4 times higher than in PM2.5–10), while coarse particles were dominated by material of natural origin (the percentage of particles associated was 1.2 and 3.0 times higher than in PM2.5 for traffic and background sites, respectively). Previous results obtained by proton induced X-ray emission (PIXE) were consistent with SEM–EDS analysis that showed to be very useful to complement elemental analysis of different PM2.5 and PM2.5–10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号