首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weather models are essential tools for checking of the effect of the weather elements in terms of their effect on the production of the crop. This research is an attempt to see the effect of only two variables i.e., temperature and rainfall for the division Faisalabad (semitropical region of Pakistan).The model fitted is of the linear form:the values of a,b, c have been found. The expected yield has been calculated by using the aridity indices (X1 and X2 ) and the result in the form of coefficient of determination R2 has been found equal to 0.166. The significance of the regression coefficient has been tested, which shows that the contribution to the yield from aridity index at germination and that at ripening is significant.The wheat yields are the results of a wide variety of variables, most of which show varying degree of relationship with one another, some positive and some negative in terms of output. These variables may be technology, fertilizers, pesticides, epidemics, kinds of seeds used, market  相似文献   

2.
A spring-composite index (s-CI) is proposed in this study that involves slightly altering the use of the accumulated precipitation from the composite index (CI) comparing the value with other three commonly used indices (standardized precipitation index, SPI; self-calibrated Palmer drought severity index, sc-PDSI; and CI). In addition, the spatial–temporal variation of the s-CI in the Songnen Plain (SNP) was investigated using the Mann–Kendall test and empirical orthogonal function (EOF) methods. The results indicated that the proposed s-CI could identify most drought events in 1990s and 2000s and performed relatively better than SPI, sc-PDSI, and CI in this region. Compared with the other three indices, the s-CI had a higher correlation with relative soil moisture in April and May. The recent spring droughts (2000s) were the most severe in April or May. The weather was drier in May compared with April in the 1980s, whereas the weather was wetter in May than in April in the 1960s and 1970s. Moreover, the spatial patterns of the first EOFs for both April and May indicated an obviously east–west gradient in the SNP, whereas the second EOFs displayed north–south drought patterns. The proposed index is particularly suitable for detecting, monitoring, and exploring spring droughts in the Songnen Plain under global warming.  相似文献   

3.
A change in economic structure influences the total energy consumption as well as CO2 emissions of a country, given the inherent difference in levels of energy intensity and energy fuel mix of different economic sectors. Its significance has been recognized in recent literature on China’s emission mitigation which could arguably raise China’s mitigation potential and thus the possibility of keeping the 2-degree trajectory on track. This article utilizes the past trend of economic structural change of five East Asian developed economies to project the energy consumption and CO2 emissions of China in the coming decades. A special delineation of the economic sector is made, putting private consumption together with the three typical economic production sectors, to resolve the mismatch between the statistical data of energy consumption and economic production, in that residential energy consumption is typically merged into the tertiary sector, although it does not directly correspond to gross domestic product (GDP) output. Results suggest that the level of CO2 emissions would be lower if China followed a development pathway emphasizing the development of the tertiary sector and continuously shrinking her secondary sector, making it possible for China to contribute more to global carbon mitigation. The impact from the rise of private consumption would be relatively insignificant compared to deindustrialization. In addition to continuous improvement in technology, economic structural change, which reduces carbon emission intensity, would be essential for China to be able to achieve the carbon emission level pledged in the Paris Agreement.

Key policy insights

  • For China, significant economic structural reform, particularly deindustrialization, is necessary to achieve the goal of ‘peak emission by 2030’.

  • Any additional contribution from China to the global effort to maintain a 2-degree trajectory would be limited – from a ‘fair-contribution’ perspective based on share of population or GDP – because the implied mitigation targets would be almost impossible to achieve.

  • If developing countries follow the pathway of developed economies, particularly in developing energy-intensive industries, energy consumption and CO2 emissions would significantly increase, reducing the possibility of keeping global temperature rise within the 2-degree Celsius benchmark.

  相似文献   

4.
Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.  相似文献   

5.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants. It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported. The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods- one was impacts of ozone on light use efficiency, and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coefficients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

6.
A hybrid coupled model(HCM) is constructed for El Nino–Southern Oscillation(ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating(OBH), and tropical instability waves(TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.  相似文献   

7.
Summary  A completely new nonhydrostatic model system known as the Advanced Regional Prediction System (ARPS) has been developed in recent years at the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma. The ARPS is designed from the beginning to serve as an effective tool for basic and applied research and as a system suitable for explicit prediction of convective storms as well as weather systems at other scales. The ARPS includes its own data ingest, quality control and objective analysis packages, a data assimilation system which includes single-Doppler velocity and thermodynamic retrieval algorithms, the forward prediction component, and a self-contained post-processing, diagnostic and verification package. The forward prediction component of the ARPS is a three-dimensional, nonhydrostatic compressible model formulated in generalized terrain-following coordinates. Minimum approximations are made to the original governing equations. The split-explicit scheme is used to integrate the sound-wave containing equations, which allows the horizontal domain-decomposition strategy to be efficiently implemented for distributed-memory massively parallel computers. The model performs equally well on conventional shared-memory scalar and vector processors. The model employs advanced numerical techniques, including monotonic advection schemes for scalar transport and variance-conserving fourth-order advection for other variables. The model also includes state-of-the-art physics parameterization schemes that are important for explicit prediction of convective storms as well as the prediction of flows at larger scales. Unique to this system are the consistent code styling maintained for the entire model system and thorough internal documentation. Modern software engineering practices are employed to ensure that the system is modular, extensible and easy to use. The system has been undergoing real-time prediction tests at the synoptic through storm scales in the past several years over the continental United States as well as in part of Asia, some of which included retrieved Doppler radar data and hydrometeor types in the initial condition. As the first of a two-part paper series, we describe herein the dynamic and numerical framework of the model, together with the subgrid-scale turbulence and the PBL parameterization. The model dynamic and numerical framework is then verified using idealized and realistic mountain flow cases and an idealized density current. Other physics parameterization schemes will be described in Part II, which is followed by verification against observational data of the coupled soil-vegetation model, surface layer fluxes and the PBL parameterization. Applications of the model to the simulation of an observed supercell storm and to the prediction of a real case are also found in Part II. In the latter case, a long-lasting squall line developed and propagated across the eastern part of the United States following a historical number of tornado outbreak in the state of Arkansas. Received April 14, 2000 Revised July 17, 2000  相似文献   

8.
TheAfricanClimateasPredictedbytheIAPGrid-PointNine-LayerAtmosphericGeneralCirculationModel(IAP-9L-AGCM)ChinekeTheoChidiezie①,...  相似文献   

9.
This paper presents the earliest temperature observations, scheduled every 3–4 h in the 1654–1670 period, which have been recovered and analysed for the first time. The observations belong to the Medici Network, the first international network of meteorological observations, based on eleven stations, the two main ones being Florence and Vallombrosa, Italy. All observations were made with identical thermometers and operational methodology, including outdoor exposure in the shade and in the sunshine to evaluate solar heating, state of the sky, wind direction and precipitation frequency. This paper will consider only the regular temperature series taken in the shade. The observations were made with the newly invented spirit-in-glass thermometer, also known as Little Florentine Thermometer (LFT). The readings have been transformed into modern units of temperature (°C) and time (TMEC). The LFT has been analysed in detail: how it was made, its linearity, calibration and performances. Since the middle of the LIA, the climate in Florence has shown less than 0.18°C warming. However, although the yearly average showed little change, the seasonal departures are greater, i.e. warmer summers, colder winters and unstable mid seasons. The temperature in the Vallombrosa mountain station, 1,000 m a.m.s.l, apparently rose more, i.e. 1.41°C. A discussion is made on the interpretation of this finding: how much it is affected by climate change or bias. A continuous swinging of the temperature was observed in the Mediterranean area, as documented by the long instrumental observations over the 1654–2009 period. However, changes in vegetation, or exposure bias might have contributed to reduce the homogeneity of the series over the centuries.  相似文献   

10.
A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (ε g), defined as the difference between the energy production (P D) due to surface entropy flux and the energy dissipation (D S) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ε g is high, indicating sufficient energy supply for the storm to intensify. However, the ε g decreases rapidly as the storm quickly intensifies, because the D S increases more rapidly than the P D near the RMW. By the time the storm reaches its peak intensity, the D S is about 20% larger than the P D near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the P D and D S can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local P D under the eyewall is not large enough to balance the D S, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.  相似文献   

11.
12.
13.
14.
The paper discusses the impact of atmospheric circulation on the occurrence of various types of precipitation. A 146-year-long precipitation record from Kraków spanning the period 1863?C2008 was used alongside a calendar prepared by Nied?wied? (1981, 2009) describing circulation types covering the period 1873?C2008 and air masses and atmospheric fronts covering the period 1951?C2008 in southern Poland. The influence of atmospheric circulation on precipitation was measured using the frequency, conditional probability and average daily totals of precipitation. Circulation types, air masses and atmospheric fronts exerted influences on precipitation as a result of the seasonal variations of the thermal and moisture properties of air masses. The impact is best expressed by circulation types as these combine the aspect of cyclonicity/anticyclonicity with that of the direction of air advection, the two elements which determine the physical properties of the air. On average, liquid precipitation prevailed in all circulation types, except the Ea type in which snowfall dominated over liquid precipitation. Depending on the season, one of the three types of circulation, Wa, Wc and Bc, were shown to coincide with the greatest amount of liquid and thunderstorm precipitation. There was no single dominant circulation type for mixed precipitation or snowfall. In summer, the circulation types Nc, NEc, Cc and Bc were the most favourable to liquid and thunderstorm precipitation in terms of both probability and totals. In winter, snowfall was the most favoured by the Ec type. Frontal precipitation was twice as likely to occur as air mass precipitation, with the exception of snowfall which was predominantly an air mass type of precipitation in terms of probability, but its greatest totals were recorded on atmospheric fronts.  相似文献   

15.
16.
Oshika  Miki  Tachibana  Yoshihiro  Nakamura  Tetsu 《Climate Dynamics》2015,45(5-6):1355-1366
Climate Dynamics - On the basis of a 51-year statistical analysis of reanalysis data, we propose for the first time that the positive phase of the Western Pacific (WP) pattern in the winter is...  相似文献   

17.
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical pararneterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ.In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China,where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River.The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM_NCC were made. The results are basically reasonable compared with the observations.  相似文献   

18.
19.
A photochemical box model has been used to model themeasured diurnal ozone cycle in spring at Jungfraujochin the Swiss Alps. The comparison of the modelleddiurnal ozone cycle with the mean measured diurnalozone cycle in spring, over the period 1988–1996,shows a good agreement both with regard to the shapeand amplitude. Ozone concentrations increase duringthe daytime and reach a maximum at about 16:00–17:00(GMT) in both the modelled and the mean observed ozonecycle, indicative of net ozone production during thedaytime at Jungfraujoch in spring. The agreement isbetter when the modelled ozone cycle is compared withthe mean measured diurnal cycle (1988–1996) filteredfor north-westerly winds >5 m/s (representative ofregional background conditions at Jungfraujoch). Inaddition to ozone, the modelled diurnal cycle of[HO2] + [CH3O2] also shows rather goodagreement with the mean diurnal cycle of the peroxyradicals measured during FREETEX '96, a FREETropopsheric Experiment at Jungfraujoch in April/May1996. Furthermore, this mean diurnal cycle of the sumof the peroxy radicals measured during FREETEX '96 isused to calculate, using steady-state expressions, therespective diurnal cycle of the OH radical. Thecomparison of the OH diurnal cycle, calculated fromthe peroxy radical measurements during FREETEX '96,with the modelled one, reveals also good agreement.The net ozone production rate during the day-time is0.27 ppbv h-1 from the model, and 0.13 ppbvh-1 from the observations during FREETEX '96. Theobservations and model results both suggest that thediurnal ozone variation in spring at Jungfraujoch isprimarily of photochemical origin. Furthermore, theobserved and modelled positive net ozone productionrates imply that tropospheric in situphotochemistry contributes significantly to theobserved high spring ozone values in the observedbroad spring-summer ozone maximum at Jungfraujoch.  相似文献   

20.
《大气与海洋》2013,51(4):244-262
Abstract

We present evidence that both geophysical and thermodynamic conditions in sea ice are important in understanding pathways of accumulation or rejection of hexachlorocyclohexanes (HCHs). α‐ and γ‐HCH concentrations and α‐HCH enantiomer fractions have been measured in various ice classes and ages from the Canadian High Arctic. Mean α‐HCH concentrations reached 0.642 ± 0.046 ng L–1 in new and young ice (<30 cm), 0.261 ±0.015 ng L–1 in the first‐year ice (30–200 cm) and 0.208 ±0.045 in the old ice (>200 cm). Mean γ‐HCH concentrations were 0.066 ± 0.006 ng L–1 in new and young ice, 0.040 ±0.002 ng L–1 in the first‐year ice and 0.040 ±0.007 ng L–1 in the old ice. In general, α‐HCH concentrations and vertical distributions were highly dependent on the initial entrapment of brine and the subsequent desalination process. γ‐HCH levels and distribution in sea ice were not as clearly related to ice formation processes. During the year, first‐year ice progressed from freezing (accumulation) to melting (ablation). Relations between the geophysical state of the sea ice and the vertical distribution of HCHs are described as ice passes through these thermodynamic states. In melting ice, which corresponded to the algal bloom period, the influence of biological processes within the bottom part of the ice on HCH concentrations and α‐HCH enantiomer fraction is discussed using both univariate and multivariate approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号